Ondo Finance Audit Report

Prepared by Cyfrin
Version 2.0

Lead Auditor
Dacian

April 18, 2024

https://cyfrin.io
https://twitter.com/DevDacian

Contents

N~ o a &~ WwDN

About Cyfrin 2
Disclaimer 2
Risk Classification 2
Protocol Summary 2
Audit Scope 3
Executive Summary 3
Findings 6
7.1 Low Risk . . . o e e 6

7.1.1 InvestorBasedRateLimiter::setInvestorMintLimit and setInvestorRe-

demptionLimit can make subsequent calls to checkAndUpdateMintLimit and
checkAndUpdateRedemptionLimit revertdue tounderflow 6
7.1.2 Prevent creating an investor record associated with the zeroaddress 7
7.1.3 Prevent creating an investor record associated withnoaddress 7

7.1. InstantMintTimeBasedRateLimiter::_setInstantMintLimit and _setInstantRe-

demptionLimit can make subsequent calls to _checkAndUpdateInstantMintLimit and
_checkAndUpdateInstantRedemptionLimit revertdue tounderflow 9

7.1.5 0USGInstantManager redemptions will be bricked if BlackRock deploys a new BUIDLRe-
deemer contract and sunsets the existingone oo oL, 10

7.1.6 ROUSG::unwrap can unnecessarily return slightly less 0USG tokens than users originally
WIaPPEA . . . o o e e e e 10
7.1.7 Protocol may be short-changed by Buid1Redeemer during a USDC depeg event 12
7.2 Informational e e 14
7.2.1 Consider implementing unlimited approvals for rOUSG token 14
7.2.2 Reduce approval before transferring tokens in rOUSG: : transferFrom 14
7.2.3 Transfer tokens before minting shares in rOUSG: :wrap 14

7.2.4 Round up fees in 0USGInstantManager: :_getInstantMintFees and _getInstantRedemp-
tionFees to favor the protocol L 14
7.2.5 Misleading events are emitted when transferring a dust amount of rOUSG shares 14
7.2.6 Consider allowing ROUSG: :burn to burndustamounts 15
7.2.7 _assertUSDCPrice breaks the solidity styleguide, 15
7.3 GasOptimization e e 16
7.3.1 Cache array length outside of loops and consider unchecked loop incrementing 16
7.3.2 Cache storage variables in stack when read multiple times without being changed 16
7.3.3 Avoid unnecessary initializationtozero oL 16

7.3.4 InvestorBasedRateLimiter::_initializeInvestorState should return newly created in-
vestorIdto save re-readingitfromstorage oL 17

7.3.5 Refactor InvestorBasedRatelLimiter::checkAndUpdateMintLimit and checkAndUp-

dateRedemptionLimit to avoid performing unnecessary operations when creating a new
INVESIOr o e 17

7.3.6 In InvestorBasedRateLimiter::_setAddressToInvestorId first read addressToIn-
vestorId[investorAddress] then use it in the if statementcheck 18

7.3.7 In InvestorBasedRateLimiter::_setAddressToInvestorId use delete when setting to
zeroforgasrefund e e 19

7.3.8 Remove return parameters from rOUSG: : _mintShares and _burnShares as they are never
read e e e e e e 19

7.3.9 In 0USGInstantManager::_mint and _redeem cache feeReceiver and only emit fee event if
feesarededucted 19

7.3.10 Change ROUSG: :unwrap to return amount of 0USG output tokens then use that as input when

calling _redeem in 0USGInstantManager: :redeemRebasingQUSG 20

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High | Impact: Medium | Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

4 Protocol Summary
Ondo Finance is a Real-World Asset Tokenization protocol which aims to bring institutional-grade investment prod-
ucts onto blockchains.
This audit only concerned:
* QUSG a tokenized wrapper of the Blackrock short-term US Treasuries ETF
» r0USG a rebalancing wrapper for 0USG
» QUSGInstantManager a manager contract that allows users to mint and redeem 0USG and rQUSG
+ a couple of rate-limiting contracts
General Overview:

Users who have satisfied KYC and other applicable regulatory requirements are able to use 0USGInstantManager
to:

* mint 0USG/r0USG in exchange for USDC
» redeem QUSG/rQUSG to receive USDC

0USG and r0USG function as ERC20 tokens which users can transfer only to other KYC’d users and the protocol
admin can place time-based global/individual user limits on the amount of allowed mints and redemptions.

The USD price of 0USG is set every day by an off-chain Oracle controlled by the protocol and the price is expected
to be "up only" to reflect the yield generated by the underlying real-world assets.

External Integrations:

The protocol’s primary external integration is with Blackrock’s new BUIDL token and associated redemption con-
tract. When users redeem 0USG/r0USG via 0USGInstantManager the protocol must provide them with USDC. In order
to source this USDC the protocol redeems enough BUIDL from Blackrock’s redemption contract to cover the required
USDC as Blackrock’s redemption contract provides 1:1 BUIDL:USDC redemptions.

https://cyfrin.io

There is no on-chain mechanism for the protocol to deposit BUIDL with Blackrock; this process happens off-chain
and we are to assume there will always be sufficient BUIDL to redeem such that the protocol will always be able to
provide USDC when users redeem 0USG/r0USG.

Centralization Risks:

Due to the regulated nature of the underlying assets being tokenized and applicable regulatory requirements, the
protocol is highly centralized by design including the ability for the protocol admins to seize the assets of users;
users must place a high degree of trust in the protocol team. All issues related to centralization were outside the
scope of the audit.

5 Audit Scope

The following contracts were included in the scope for this audit:

contracts/ousg/ousgInstantManager.sol
contracts/ousg/r0USG.sol
contracts/ousg/InvestorBasedRateLimiter.sol
contracts/InstantMintTimeBasedRateLimiter.sol
contracts/kyc/KYCRegistryClientUpgradeable.sol

6 Executive Summary

Over the course of 9 days, the Cyfrin team conducted an audit on the Ondo Finance smart contracts provided by
Ondo Finance. In this period, a total of 24 issues were found.

The protocol was recently audited in an audit contest and we were auditing a version of the codebase which had
resolved the most important findings from that contest with knowledge of the contest findings. There was 1 new
contract InvestorBasedRateLimiter.sol which was not present in the audit contest.

Our findings consisted of 7 Low severity issues with the remainder being informational and gas optimizations. Of
the 7 Low severity issues:

+ 2 related to unlikely scenarios that could arise in the integration with Blackrock’s BUIDL redemption contract

+ 2 related to breaking a InvestorBasedRateLimiter invariant: "when a new investorId is created, it should
be associated with one or more valid addresses”

+ 1 related to breaking a ROUSG invariant: "when unwrapping users should receive the same amount of 0USG
input tokens they provided when they wrapped, irrespective of price"

+ 2 related to underflow reverts inside checks performed by InvestorBasedRateLimiter and InstantMint-
TimeBasedRatelLimiter

All of the above findings were successfully mitigated by the protocol team.
Fuzz Testing:

As part of our audit we used both stateless and stateful/invariant fuzz testing; all code for our fuzz testing was
delivered to the protocol team as an additional deliverable at the conclusion of the audit.

https://github.com/ondoprotocol/rwa-internal
https://ondo.finance

Summary

Project Name Ondo Finance

Repository rwa-internal

Commit 6747ebadalcs...

Audit Timeline Apr 8th - Apr 18th

Methods Manual Review, Stateful Fuzzing
Issues Found

Critical Risk 0

High Risk 0

Medium Risk 0

Low Risk 7

Informational 7

Gas Optimizations | 10

Total Issues 24

Summary of Findings

[L-1] InvestorBasedRateLimiter::setInvestorMintLimit and set- | Resolved
InvestorRedemptionLimit can make subsequent calls to checkAndUpdateM-

intLimit and checkAndUpdateRedemptionLimit revert due to underflow

[L-2] Prevent creating an investor record associated with the zero address Resolved

[L-3] Prevent creating an investor record associated with no address Resolved

[L-4] InstantMintTimeBasedRatelimiter::_setInstantMintLimit and _- | Resolved
setInstantRedemptionLimit can make subsequent calls to _checkAndUp-
datelInstantMintLimit and _checkAndUpdateInstantRedemptionLimit re-

vert due to underflow

[L-5] oUSGInstantManager redemptions will be bricked if BlackRock deploys a | Resolved

new BUIDLRedeemer contract and sunsets the existing one

[L-6] ROUSG: :unwrap can unnecessarily return slightly less 0USG tokens than | Resolved
users originally wrapped

[L-7] Protocol may be short-changed by Buid1lRedeemer during a USDC depeg | Resolved
event

[I-1] Consider implementing unlimited approvals for rOUSG token Acknowledged
[I-2] Reduce approval before transferring tokens in rOUSG: : transferFrom Acknowledged
[I-3] Transfer tokens before minting shares in rQUSG: : wrap Acknowledged
[I-4] Round up fees in 0USGInstantManager: : _getInstantMintFees and _- | Acknowledged

getInstantRedemptionFees to favor the protocol

https://github.com/ondoprotocol/rwa-internal
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a

[I-5] Misleading events are emitted when transferring a dust amount of rOUSG | Acknowledged
shares

[I-6] Consider allowing ROUSG: : burn to burn dust amounts Resolved

[I-7] _assertUSDCPrice breaks the solidity style guide Resolved
[G-1] Cache array length outside of loops and consider unchecked loop incre- | Acknowledged
menting

[G-2] Cache storage variables in stack when read multiple times without being | Acknowledged
changed

[G-3] Avoid unnecessary initialization to zero Resolved
[G-4] InvestorBasedRatelLimiter::_initializeInvestorState should re- | Resolved

turn newly created investorId to save re-reading it from storage

[G-5] Refactor InvestorBasedRatelimiter: : checkAndUpdateMintLimit and | Acknowledged
checkAndUpdateRedemptionLimit to avoid performing unnecessary opera-

tions when creating a new investor

[G-6] In InvestorBasedRateLimiter::_setAddressToInvestorId first read | Acknowledged
addressToInvestorId[investorAddress] then use it in the if statement

check

[G-7] In 1InvestorBasedRateLimiter::_setAddressToInvestorId use | Acknowledged
delete when setting to zero for gas refund

[G-8] Remove return parameters from rOUSG: : _mintShares and _burnShares | Resolved

as they are never read

[G-9] In OUSGInstantManager: :_mint and _redeem cache feeReceiver and | Acknowledged
only emit fee event if fees are deducted

[G-10] Change ROUSG::unwrap to return amount of 0USG output to- | Acknowledged

kens then use that as input when calling _redeem in OUSGInstantMan-
ager: :redeemRebasing0USG

7 Findings
7.1 Low Risk

7.1.1 InvestorBasedRateLimiter::setInvestorMintLimit and setInvestorRedemptionLimit can make
subsequent calls to checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit revert due to
underflow

Description: InvestorBasedRateLimiter::_checkAndUpdateRateLimitState L211-213 subtracts the current
mint/redemption amount from the corresponding limit:

if (amount > rateLimit.limit - rateLimit.currentAmount) {
revert RateLimitExceeded();

}

If setInvestorMintLimit Or setInvestorRedemptionLimit are used to set the limit amount for minting or redemp-
tions smaller than the current mint/redemption amount, calls to this function will revert due to underflow.

Impact: InvestorBasedRateLimiter::setInvestorMintLimit and setInvestorRedemptionLimit can make
subsequent calls to checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit revert due to underflow.

Proof of Concept: Add this drop-in PoC to forge-tests/ousg/InvestorBasedRatelimiter/setters.t.sol:

function test_setInvestorMintLimit_underflow_DoS() public initDefault(alice) {
// first perform a mint
uint256 mintAmount = rateLimiter.defaultMintLimit();
vm.prank(client);
rateLimiter.checkAndUpdateMintLimit (alice, mintAmount) ;

// admin now reduces the mint limit to be under the current

// minted amount

uint256 aliceInvestorId = 1;

uint256 newMintLimit = mintAmount - 1;

vm.prank(guardian) ;

rateLimiter.setInvestorMintLimit (aliceInvestorId, newMintLimit);

// subsequent calls to “checkdndUpdateNintLimit revert due to underflow
vm.prank(client) ;

rateLimiter.checkAndUpdateMintLimit (alice, 1);

// same issue affects “setInvestorRedemptionLimit’

Run with: forge test --match-test test_setInvestorMintLimit_underflow_DoS

Produces output:

Ran 1 test for

— forge—tests/ousg/InvestorBasedRateLimiter/setters.t.sol:Test_InvestorBasedRateLimiter_setters_ETH
[FAIL. Reason: panic: arithmetic underflow or overflow (0x11)]

— test_setInvestorMintLimit_underflow_DoS() (gas: 264384)

Suite result: FAILED. O passed; 1 failed; O skipped; finished in 1.09ms (116.74ps CPU time)

Recommended Mitigation: Explicitly handle the case where the limit is smaller than the current mint/redemption
amount:

if (rateLimit.limit <= rateLimit.currentAmount || amount > rateLimit.limit - rateLimit.currentAmount) {
revert RatelLimitExceeded();

https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/ousg/InvestorBasedRateLimiter.sol#L211-L213

Ondo: Fixed in commit fb8ecff.
Cyfrin: Verified.

7.1.2 Prevent creating an investor record associated with the zero address

Description: InvestorBasedRateLimiter::checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit
can create a new investor record and associate it with the zero address.

Impact: Investor records can be created which are associated with the zero address. This breaks the following
invariant of the InvestorBasedRateLimiter contract:

when a new investorId is created, it should be associated with one or more valid addresses

Proof of Concept: Add this drop-in PoC to forge-tests/ousg/InvestorBasedRateLimiter/client.t.sol:

function test_mint_zero_address() public {
uint256 mintAmount = ratelLimiter.defaultMintLimit();
vm.prank(client);
rateLimiter.checkAndUpdateMintLimit (address(0), mintAmount);

// an investor has been created with a 0 address
assertEq(1l, rateLimiter.addressToInvestorId(address(0)));

// same issue affects checkAndUpdateRedemptionLimit

Run with: forge test --match-test test_mint_zero_address

Recommended Mitigation: In _setAddressToInvestorId revert for the zero address:

function _setAddressToInvestorId(
address investorAddress,
uint256 newlnvestorId
) intermal {
if (investorAddress == address(0)) revert NoZeroAddress();

Ondo: Fixed in commit bac99d0.
Cyfrin: Verified.

7.1.3 Prevent creating an investor record associated with no address

Description: InvestorBasedRateLimiter::initializeInvestorStateDefault is supposed to associate a newly
created investor with one or more addresses but the for loop which does this can be bypassed by calling the
function with an empty array:

function initializeInvestorStateDefault (
address[] memory addresses
) external onlyRole(CONFIGURER_ROLE) {
_initializeInvestorState(
addresses,
defaultMintLimit,
defaultRedemptionLimit,
defaultMintLimitDuration,
defaultRedemptionLimitDuration

https://github.com/ondoprotocol/rwa-internal/commit/fb8ecff80960c8c891ddc206c6f6f27a620e42d6
https://github.com/ondoprotocol/rwa-internal/commit/bac99d03d75e84ea5541297b3aa0751283c1272e
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/ousg/InvestorBasedRateLimiter.sol#L253-L260

function _initializeInvestorState(
address[] memory addresses,
uint256 mintLimit,
uint256 redemptionLimit,
uint256 mintLimitDuration,
uint256 redemptionLimitDuration
) intermal {
uint256 investorId = ++investorIdCounter;

// Qaudit this “for™ loop can by bypassed by calling
// “initializelnvestorStateDefault™ with an empty array
for (uint256 i = 0; i < addresses.length; ++i) {
// Safety check to ensure the address is not already associated with an investor
// before associating it with a new investor
if (addressTolInvestorId[addresses[i]] != 0) {
revert AddressAlreadyAssociated();
}
_setAddressToInvestorId(addresses[i], investorId);

}

investorIdToMintState[investorId] = RateLimit ({
currentAmount: O,
limit: mintLimit,
lastResetTime: block.timestamp,
limitDuration: mintLimitDuration

b;

investorIdToRedemptionState[investorId] = RateLimit ({
currentAmount: O,
limit: redemptionLimit,
lastResetTime: block.timestamp,
limitDuration: redemptionLimitDuration

B;

Impact: An investor record can be created without any associated address. This breaks the following invariant of
the InvestorBasedRateLimiter contract:

when a new investorId is created, it should be associated with one or more valid addresses

Proof of Concept: Add this drop-in PoC to forge-tests/ousg/InvestorBasedRateLimiter/setters.t.sol:

function test_initializeInvestor_NoAddress() public {
// mo investor created
assertEq(0, ratelLimiter.investorIdCounter());

// empty input array will bypass the “for® loop that is supposed
// to associate addresses to the newly created investor
address[] memory addresses;

vm.prank(guardian) ;
rateLimiter.initializeInvestorStateDefault (addresses);

// one investor created
assertEq(1l, ratelLimiter.investorIdCounter());

// not associated with any addresses
assertEq(0, ratelimiter.investorAddressCount(1));

Run with: forge test --match-test test_initializeInvestor_NoAddress

Recommended Mitigation: In _initializeInvestorState revert if the input address array is empty:

uint256 addressesLength = addresses.length;

if (addressesLength == 0) revert EmptyAddressArray();

Ondo: Fixed in commit bac99dO0.
Cyfrin: Verified.
7.1.4 InstantMintTimeBasedRateLimiter::_setInstantMintLimit and _setInstantRedemptionLimit can

make subsequent calls to _checkAndUpdateInstantMintLimit and _checkAndUpdatelInstantRedemp-
tionLimit revert due to underflow

Description: InstantMintTimeBasedRateLimiter: : _checkAndUpdateInstantMintLimit L103-106 subtracts the
currently minted amount from the mint limit:

require(
amount <= instantMintLimit - currentInstantMintAmount,
"RateLimit: Mint exceeds rate limit"

)

If _setInstantMintLimit is used to set instantMintLimit < currentInstantMintAmount, subsequent calls to
this function will revert due the underflow. The same is true for _setInstantRedemptionLimit and _checkAndUp-
dateInstantRedemptionLimit.

Impact: InstantMintTimeBasedRateLimiter::_setInstantMintLimit and _setInstantRedemptionLimit can
make subsequent calls to _checkAndUpdateInstantMintLimit and _checkAndUpdateInstantRedemptionLimit
revert due to underflow.

Recommended Mitigation: Explicitly handle the case where the limit is smaller than the current mint/redemption
amount:

function _checkAndUpdateInstantMintLimit(uint256 amount) internal {
require(
instantMintLimit > currentInstantMintAmount && amount <= instantMintLimit -
— currentInstantMintAmount,
"RateLimit: Mint exceeds rate limit"
);
¥

function _checkAndUpdateInstantRedemptionLimit(uint256 amount) internal {
require(
instantRedemptionLimit > currentInstantRedemptionAmount && amount <= instantRedemptionLimit -
«— currentInstantRedemptionAmount,
"RateLimit: Redemption exceeds rate limit"

)

Ondo: Fixed in commit fb8ecff.
Cyfrin: Verified.

https://github.com/ondoprotocol/rwa-internal/commit/bac99d03d75e84ea5541297b3aa0751283c1272e
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/InstantMintTimeBasedRateLimiter.sol#L103-L106
https://github.com/ondoprotocol/rwa-internal/commit/fb8ecff80960c8c891ddc206c6f6f27a620e42d6

7.1.5 0USGInstantManager redemptions will be bricked if BlackRock deploys a new BUIDLRedeemer contract
and sunsets the existing one

Description: The BUIDLRedeemer contract is a very new contract; it is very possible that in the future a new version
of the contract will be deployed and the current version will cease to function.

To future-proof 0USGInstantManager and ensure it will continue to function in this situation, remove the immutable
keyword from the buidlRedeemer definition and add a setter function that allows it to be updated in the future.

Ondo: If a new BUIDLRedeemer contract is deployed our plan is to deploy a new 0USGInstantManager. We prefer
to make it harder for us to change the address of buidlRedeemer to ensure there is proper due diligence of any
changes.

7.1.6 ROUSG: :unwrap can unnecessarily return slightly less 0USG tokens than users originally wrapped

Description: One invariant of the ROUSG token is:

when unwrapping users should receive the same amount of OUSG input tokens they provided when
they wrapped, irrespective of price

However this can often not be the case as ROUSG: :unwrap can unnecessarily return slightly less 0USG tokens than
users originally wrapped.

Impact: Users will unnecessarily receive slightly less tokens than they originally wrapped, breaking an invariant of
the ROUSG contract.

Proof of Concept: Run this stand-alone stateless fuzz test which shows the problem:

// SPDX-License-Identifier: MIT
pragma solidity ~0.8.23;

import "forge-std/Test.sol";

// run from base project directory with:
// forge test --match-contract ROUSGWrapUnwrapBrokenInvariantTest -vvv

contract ROUSGWrapUnwrapBrokenInvariantTest is Test {
uint256 public constant 0USG_TO_ROUSG_SHARES_MULTIPLIER = 10_000;
function _getROUSGByShares(uint256 _shares, uint256 ousgPrice) internal pure returns (uint256

— r0USGAmount) {
r0USGAmount = (_shares * ousgPrice) / (1el8 * Q0USG_TO_ROUSG_SHARES_MULTIPLIER);

function getSharesByROUSG(uint256 _r0USGAmount, uint256 ousgPrice)
internal pure returns (uint256 shares) {

shares = (_rOUSGAmount * 1el8 * OUSG_TO_ROUSG_SHARES_MULTIPLIER) / ousgPrice;
}

function _wrap(uint256 _0USGAmount) internal pure returns (uint256 shares) {
require (_OUSGAmount > O, "rOUSG: can't wrap zero OUSG tokens");

shares = _QUSGAmount * OUSG_TO_ROUSG_SHARES_MULTIPLIER;

function _unwrap(uint256 _rOUSGAmount, uint256 ousgPrice) internal pure returns(uint256 tokens) {
require (_rOUSGAmount > 0, "rQUSG: can't unwrap zero r0USG tokens");
uint256 ousgSharesAmount = getSharesByROUSG(_r0USGAmount, ousgPrice);

vm.assume (ousgSharesAmount >= 0USG_TO_ROUSG_SHARES_MULTIPLIER);

10

tokens = ousgSharesAmount / OUSG_TO_ROUSG_SHARES_MULTIPLIER;

function test_WrapUnwrapReturnsInputTokens(uint256 initialOUSGAmount, uint256 ousgPrice) external {
// bound tinputs
initial0USGAmount = bound(initialOUSGAmount, 100000e18, type(uint128).max);

bound (ousgPrice, 105e18, 106e18);

ousgPrice

// wrap 0USG into rOUSG
uint256 rousgShares = _wrap(initialOUSGAmount) ;

// get the token amount of TOUSG equivalent to the received shares
uint256 rousgAmount = _getROUSGByShares(rousgShares, ousgPrice);

// use the token amount to unwrap T0USG back into O0USG
uint256 finalOUSGAmount = _unwrap(rousgAmount, ousgPrice);

// verify amounts match; this fails as user is slighty short-changed
assertEq(initialQUSGAmount, finalOUSGAmount) ;

Recommended Mitigation: When calling ROUSG: :unwrap, burn and 0USGInstantMan-
ager: :redeemRebasing0USG, instead of passing in the ROUSG token amount the callers should pass in
the share amount which can be retrieved via ROUSG: :shares0f. The output token calculation can then be
performed as shares / OUSG_TO_ROUSG_SHARES_MULTIPLIER which will always return the correct amount of
tokens.

The existing functions do not necessarily need to be removed but additional functions should be created to allow
users to input the share amounts. The following function has been tested via an invariant fuzz testing suite and
appears to always return the correct amount:

// Qaudit this function allow unwrapping by shares instead of tokens

// to prevent users being slightly short-changed such that users will

// always receive the same input amount of O0USG tokens

function unwrapShares(uint256 _shares) external whenNotPaused {
uint256 ousgTokens = _shares / 0USG_TO_ROUSG_SHARES_MULTIPLIER;

require(ousgTokens > 0, "rOUSG: no tokens to send, unwrap more shares");
uint256 rousgBurned = getROUSGByShares(_shares);

_burnShares (msg.sender, _shares);
ousg.transfer (msg.sender, ousgTokens);

emit Transfer(msg.sender, address(0), rousgBurned);
emit TransferShares(msg.sender, address(0), _shares);

Proof that this mitigation works, using a modified version of the PoC stateless fuzz test:

First ensure that foundry.toml has the fuzz setting increased for example:

[fuzz]
runs = 1000000

Then run this stand-alone stateless fuzz test which verifies the solution:

// SPDX-License-Identifier: MIT

11

pragma solidity ~0.8.23;
import "forge-std/Test.sol";

// run from base project directory with:
// forge test --match-contract ROUSGWrapUnwrapFizedInvariantTest -vvv

contract ROUSGWrapUnwrapFixedInvariantTest is Test {
uint256 public constant O0USG_TO_ROUSG_SHARES_MULTIPLIER = 10_000;

function _wrap(uint256 _0USGAmount) internal pure returns (uint256 shares) {
require (_OUSGAmount > O, "rOUSG: can't wrap zero OUSG tokens");

shares = _QUSGAmount * OUSG_TO_ROUSG_SHARES_MULTIPLIER;

function _unwrapShares(uint256 shares) internal pure returns(uint256 tokens) {
tokens = shares / 0OUSG_TO_ROUSG_SHARES_MULTIPLIER;
}

function test_WrapUnwrapReturnsInputTokens(uint256 initialOUSGAmount, uint256 ousgPrice) external {
// bound tinputs
initial0USGAmount = bound(initialOUSGAmount, 100000e18, type(uint128) .max);
ousgPrice bound (ousgPrice, 105e18, 106e18);

// wrap 0USG into r0OUSG
uint256 rousgShares = _wrap(initialOUSGAmount);

// use the token amount to unwrap r0USG back into O0USG
uint256 finalOUSGAmount = _unwrapShares(rousgShares) ;

assertEq(initialQUSGAmount, finalOUSGAmount) ;

Ondo: Fixed in commits df0e491, 2aa437a. We decided on not making any changes to 0USGInstantManager due
to the amount of code changes necessary.

Cyfrin: Verified.

7.1.7 Protocol may be short-changed by BuidlRedeemer during a USDC depeg event

Description: 0USGInstantManager: : _redeemBUIDL assumes that 1 BUIDL = 1 USDC as it enforces receiving 1
USDC for every 1 BUIDL it redeems:

uint256 usdcBalanceBefore = usdc.balanceOf (address(this));
buidl.approve(address(buidlRedeemer), buidlAmountToRedeem) ;
buidlRedeemer.redeem(buidlAmountToRedeem) ;
require (
usdc.balanceOf (address(this)) == usdcBalanceBefore + buidlAmountToRedeem,
"0USGInstantManager: : _redeemBUIDL: BUIDL:USDC not 1:1"
)

In the event of a USDC depeg (especially if the depeg is sustained), BUIDLRedeemer should return greater than
a 1:1 ratio since 1 USDC would not be worth $1, hence 1 BUIDL != 1 USDC meaning the value of the protocol’s
BUIDL is worth more USDC. However BUIDLReceiver does not do this, it only ever returns 1:1.

Impact: In the event of a USDC depeg the protocol will be short-changed by BuidlRedeemer since it will happily

12

https://github.com/ondoprotocol/rwa-internal/commit/df0e491fb081f4b7cd0d7329f8763e644ea77c18
https://github.com/ondoprotocol/rwa-internal/commit/2aa437aa78435fc4533c3a9d223460da34e71647
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/ousg/ousgInstantManager.sol#L453-L459
https://etherscan.io/address/0x9ba14Ce55d7a508A9bB7D50224f0EB91745744b7#code

receive only 1 USDC for every 1 BUIDL redeemed, even though the value of 1 BUIDL would be greater than the
value of 1 USDC due to the USDC depeg.

Recommended Mitigation: To prevent this situation the protocol would need to use an oracle to check whether
USDC had depegged and if so, calculate the amount of USDC it should receive in exchange for its BUIDL. If
it is short-changed it would either have to revert preventing redemptions or allow the redemption while saving
the short-changed amount to storage then implement an off-chain process with BlackRock to receive the short-
changed amount.

Alternatively the protocol may simply accept this as a risk to the protocol that it will be willingly short-changed
during a USDC depeg in order to allow redemptions to continue.

Ondo: Fixed in commits 408bff1, 8a9cae9. We now use Chainlink USDC/USD Oracle and if USDC depegs below
our tolerated minimum value both minting and redemptions will be stopped.

Cyfrin: Verified.

13

https://github.com/ondoprotocol/rwa-internal/commit/408bff112c39f393f67dde6c30a6addf3b221ee9
https://github.com/ondoprotocol/rwa-internal/commit/8a9cae9af5787f06db42b4224b147d60493e0133

7.2 Informational
7.2.1 Consider implementing unlimited approvals for r0USG token

Description: ERC20 tokens commonly implement unlimited approvals by allowing users to approve spenders for
type (uint256) .max. Consider implementing this common feature; an example from OpenZeppelin.

Ondo: Acknowledged.

7.2.2 Reduce approval before transferring tokens in r0USG: : transferFrom

Description: r0USG: : transferFrom L286-289 currently checks approvals, transfers the tokens then reduces the
approvals:

// verify approval
require(currentAllowance >= _amount, "TRANSFER_AMOUNT_EXCEEDS_ALLOWANCE");

// perform transfer
_transfer(_sender, _recipient, _amount);

// reduce approval
_approve(_sender, msg.sender, currentAllowance - _amount) ;

A safer coding pattern is to reduce the approval first then transfer tokens similar to OpenZeppelin’s impementation.

Ondo: Acknowledged.

7.2.3 Transfer tokens before minting shares in r0USG: :wrap

Description: r0USG: :wrap L411-413 currently mints shares before transferring tokens used to mint those shares:

// mint shares
uint256 ousgSharesAmount = _0USGAmount * OUSG_TO_ROUSG_SHARES_MULTIPLIER;
_mintShares(msg.sender, ousgSharesAmount) ;

// transfer tokens used to mint the shares
ousg.transferFrom(msg.sender, address(this), _0USGAmount);

A safer coding pattern is to transfer the tokens first then mint the shares.

Ondo: Acknowledged.

7.2.4 Round up fees in 0USGInstantManager: : _getInstantMintFees and _getInstantRedemptionFees to fa-
vor the protocol

Description: Solidity rounds down by default so consider explicitly rounding up fees in 0USGInstantManager: : _-
getInstantMintFees and _getInstantRedemptionFees to favor the protocol.

Ondo: Acknowledged.

7.2.5 Misleading events are emitted when transferring a dust amount of rOUSG shares

Description: Calling ROUSG. transferShares emits two events:

TransferShares: How much rOUSG shares were transferred Transfer: How much rOUSG tokens were trans-
ferred

Calling this function with a dust amount will emit an event that a non-zero amount of shares was transferred,
together with an event that zero tokens were transferred as the getROUSGByShares will round to O.

Ondo: Acknowledged.

14

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol#L301-L311
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/ousg/rOUSG.sol#L286-L289
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol#L151-L152
https://github.com/ondoprotocol/rwa-internal/blob/6747ebada1c867a668a8da917aaaa7a0639a5b7a/contracts/ousg/rOUSG.sol#L411-L413

7.2.6 Consider allowing ROUSG: : burn to burn dust amounts

Description: ROUSG: : burn is used by admins to burn r0USG tokens from any account for regulatory reasons.

It does not allow burning a share amount smaller than 1e4, because this is less than a wei of QUSG.

if (ousgSharesAmount < OUSG_TO_ROUSG_SHARES_MULTIPLIER)
revert UnwrapTooSmall();

Depending on the current and future regulatory situation it could be necessary to always be able to burn all shares
from users.

Recommended Mitigation: Consider allowing the burn function to burn all remaining shares even if under the
minimum amount.

Ondo: Fixed in commit 2aa437a.
Cyfrin: Verified.

7.2.7 _assertUSDCPrice breaks the solidity style guide

Description: The _assertUSDCPrice function is public and starts with an underscore. According to the solidity
style guide, this convention is suggested for non-external functions and state variables (private or internal).

Recommended Mitigation: Remove the _, or change the visibility of the function.
Ondo: Fixed in commit fc1c8fb.
Cyfrin: Verified.

15

https://github.com/ondoprotocol/rwa-internal/commit/2aa437aa78435fc4533c3a9d223460da34e71647
https://docs.soliditylang.org/en/latest/style-guide.html
https://docs.soliditylang.org/en/latest/style-guide.html
https://github.com/ondoprotocol/rwa-internal/commit/fc1c8fbd9efb77d4307611d83d7350d869a23e22

7.3 Gas Optimization
7.3.1 Cache array length outside of loops and consider unchecked loop incrementing

Description: Cache array length outside of loops and consider using unchecked {++i;} if not compiling with solc
--ir-optimized --optimize:

File: contracts/ousg/InvestorBasedRateLimiter.sol

253: for (uint256 i = 0; i < addresses.length; ++i) {

File: contracts/ousg/ousgInstantManager.sol

881: for (uint256 i = 0; i < exCallData.length; ++i) {

Ondo: Acknowledged.

7.3.2 Cache storage variables in stack when read multiple times without being changed

Description: Reading from storage is considerably more expensive than reading from the stack so cache storage
variables when read multiple times without being changed:

File: contracts/ousg/InvestorBasedRateLimiter.sol

// @audit cache these then use cache values when emitting event to save 2 storage reads
324: --investorAddressCount [previousInvestorId];
335: ++investorAddressCount [newInvestorId];

// Qaudit cache and use cached value for check in L470 to save 1 storage read
462: if (mintState.lastResetTime == 0) {

// @audit cache and use cached value for check in L506 to save 1 storage read
498: if (redemptionState.lastResetTime == 0) {

Ondo: Acknowledged.

7.3.3 Avoid unnecessary initialization to zero

Description: Avoid unnecessary initialization to zero:

File: contracts/ousg/InvestorBasedRateLimiter.sol

253: for (uint256 i = 0; i < addresses.length; ++i) {

File: contracts/ousg/ousgInstantManager.sol
106: uint256 public mintFee = O;
109: uint256 public redeemFee = 0O;

881: for (uint256 i = 0; i < exCallData.length; ++i) {

Ondo: Fixed in commit a7dab64.
Cyfrin: Verified.

16

https://github.com/ondoprotocol/rwa-internal/commit/a7dab64a2ad87b6ca051c3aeb5371c8f9f933350

7.3.4 InvestorBasedRatelLimiter::_initializeInvestorState should return newly created investorId to
save re-reading it from storage

Description: InvestorBasedRateLimiter::_initializeInvestorState should return the newly created in-
vestorId; this can then be used inside checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit to save
1 storage read in each function. For example take checkAndUpdateMintLimit:

_initializeInvestorState(
addresses,
defaultMintLimit,
defaultRedemptionLimit,
defaultMintLimitDuration,
defaultRedemptionLimitDuration

)

// @audit GAS - save 1 storage read by having _initializelnvestorState
// return the new “investorId’
investorId = addressToInvestorId[investorAddress];

This can simply become:

investorId = _initializeInvestorState(
addresses,
defaultMintLimit,
defaultRedemptionLimit,
defaultMintLimitDuration,
defaultRedemptionLimitDuration

)

Ondo: Fixed in commit 192c7ca.
Cyfrin: Verified.

7.3.5 Refactor InvestorBasedRatelLimiter::checkAndUpdateMintLimit and checkAndUpdateRedemption-
Limit to avoid performing unnecessary operations when creating a new investor

Description: When creating a new investor inside InvestorBasedRateLimiter: : checkAndUpdateMintLimit and
checkAndUpdateRedemptionLimit there is no need to do a lot of the current processing that occurs after the
second if statement. A more optimized version could look like this:

function checkAndUpdateMintLimitOptimized(
address investorAddress,
uint256 mintAmount
) external override onlyRole(CLIENT_ROLE) {
if (mintAmount == 0) {
revert InvalidAmount();

}
uint256 investorId = addressToInvestorId[investorAddress];

if (investorId == 0) {
// Q@audit GAS - for new investor, revert if “mintdmount > defaultMintLimit’
// otherwise execute next code then update investorIdToMintState[investorId].currentdmount
// and slightly change emitted event since prevdmount = 0
uint256 defaultMintLimitCache = defaultMintLimit;

if (mintAmount > defaultMintLimitCache) revert RateLimitExceeded();

// If this is a new investor, initialize their state with the default values

17

https://github.com/ondoprotocol/rwa-internal/commit/192c7ca26e4aeab4c322ef6c4be0f39b5be5d34d

address[] memory addresses = new address[](1);
addresses[0] = investorAddress;

// @audit GAS - return new investorId from “_initializelnvestorState’
investorId = _initializeInvestorState(

addresses,

defaultMintLimit,

defaultRedemptionLimit,

defaultMintLimitDuration,

defaultRedemptionLimitDuration

)

// @audit now update current minted amount
investorIdToMintState[investorId].currentAmount = mintAmount;

// @audit and alter emitted event to reflect first mint for this new tinvestor
emit MintStateUpdated(
investorAddress,
investorId,
0,
mintAmount,
defaultMintLimitCache - mintAmount
)3
}
else {
// Qaudit GAS - wrap remaining code in an “else’ to only
// execute if it wasn't a new investor
Ratelimit storage mintState = investorIdToMintState[investorId];

uint256 prevAmount = mintState.currentAmount;
_checkAndUpdateRateLimitState (mintState, mintAmount);

emit MintStateUpdated(
investorAddress,
investorld,
prevAmount,
mintState.currentAmount,
mintState.limit - mintState.currentAmount

The same optimization could be applied to checkAndUpdateRedemptionLimit.

Ondo: Acknowledged.
7.3.6 In InvestorBasedRateLimiter: :_setAddressToIlnvestorId first read
vestorId[investorAddress] then use it in the if statement check

Description: In InvestorBasedRateLimiter::_setAddressToInvestorId first read
vestorId[investorAddress] then use it in the if statement check to save 1 storage read:

addressToln-

addressToln-

function _setAddressToInvestorId(
address investorAddress,
uint256 newInvestorId
) intermal {
// @audit GAS - do this first then use it in “if check to save 1 storage read
uint256 previousInvestorId = addressToInvestorId[investorAddress];

// prevents creating the same existing association

18

if (previousInvestorId == newInvestorId) {
revert AddressAlreadyAssociated();

}

Ondo: Acknowledged.

7.3.7 In InvestorBasedRatelimiter::_setAddressToInvestorId use delete when setting to zero for gas
refund

Description: In InvestorBasedRatelLimiter: : _setAddressToInvestorId use delete when setting to zero:

// If the address is mot being disassociated from all investors, increment the count
// for the investor the address is being associated with.
if (newInvestorId != 0) {

++investorAddressCount [newInvestorId];

emit AddressToInvestorIdSet(
investorAddress,
newlInvestorld,
investorAddressCount [newInvestorId]

)

// Qaudit move this here when setting a valid value
addressToInvestorId[investorAddress] = newInvestorId;

}

else {
// @audit use “delete’ when setting to 0 for gas refund
delete addressTolInvestorId[investorAddress];

}

Ondo: Acknowledged.

7.3.8 Remove return parameters from r0USG: : _mintShares and _burnShares as they are never read

Description: Remove return parameters from r0OUSG: : _mintShares and _burnShares as they are never read.
This saves 1 storage read in each function plus the cost of the return parameters.

Ondo: Fixed in commit dc91728.
Cyfrin: Verified.
7.3.9 In Q0USGInstantManager::_mint and _redeem cache feeReceiver and only emit fee event if fees are

deducted

Description: In 0USGInstantManager: : _mint cache feeReceiver and only emit fee event if fees are deducted to
save 1 storage read:

// Transfer USDC

if (usdcFees > 0) {
// @audit GAS - cache "feeReceiver and only emit fee event if
// fees are deducted
address feeReceiverCached = feeReceiver;

usdc.transferFrom(msg.sender, feeReceiverCached, usdcFees);
emit MintFeesDeducted(msg.sender, feeReceiverCached, usdcFees, usdcAmountIn);

19

https://github.com/ondoprotocol/rwa-internal/commit/dc91728630a47ba351150287e48547a405a1282e

A similar optimization can be made in _redeem.

Ondo: Acknowledged.
7.3.10 Change ROUSG: :unwrap to return amount of 0USG output tokens then use that as input when calling
_redeem in 0USGInstantManager: :redeemRebasing0USG

Description: Change ROUSG: :unwrap to return amount of 0USG output tokens then use that as input when calling
_redeem in OUSGInstantManager: :redeemRebasingQUSG:

uint256 ousgAmountIn = rousg.unwrap (rousgAmountIn);

usdcAmountOut = _redeem(ousgAmountIn);

Ondo: Acknowledged.

20

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Audit Scope
	Executive Summary
	Findings
	Low Risk
	InvestorBasedRateLimiter::setInvestorMintLimit and setInvestorRedemptionLimit can make subsequent calls to checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit revert due to underflow
	Prevent creating an investor record associated with the zero address
	Prevent creating an investor record associated with no address
	InstantMintTimeBasedRateLimiter::_setInstantMintLimit and _setInstantRedemptionLimit can make subsequent calls to _checkAndUpdateInstantMintLimit and _checkAndUpdateInstantRedemptionLimit revert due to underflow
	OUSGInstantManager redemptions will be bricked if BlackRock deploys a new BUIDLRedeemer contract and sunsets the existing one
	ROUSG::unwrap can unnecessarily return slightly less OUSG tokens than users originally wrapped
	Protocol may be short-changed by BuidlRedeemer during a USDC depeg event

	Informational
	Consider implementing unlimited approvals for rOUSG token
	Reduce approval before transferring tokens in rOUSG::transferFrom
	Transfer tokens before minting shares in rOUSG::wrap
	Round up fees in OUSGInstantManager::_getInstantMintFees and _getInstantRedemptionFees to favor the protocol
	Misleading events are emitted when transferring a dust amount of rOUSG shares
	Consider allowing ROUSG::burn to burn dust amounts
	_assertUSDCPrice breaks the solidity style guide

	Gas Optimization
	Cache array length outside of loops and consider unchecked loop incrementing
	Cache storage variables in stack when read multiple times without being changed
	Avoid unnecessary initialization to zero
	InvestorBasedRateLimiter::_initializeInvestorState should return newly created investorId to save re-reading it from storage
	Refactor InvestorBasedRateLimiter::checkAndUpdateMintLimit and checkAndUpdateRedemptionLimit to avoid performing unnecessary operations when creating a new investor
	In InvestorBasedRateLimiter::_setAddressToInvestorId first read addressToInvestorId[investorAddress] then use it in the if statement check
	In InvestorBasedRateLimiter::_setAddressToInvestorId use delete when setting to zero for gas refund
	Remove return parameters from rOUSG::_mintShares and _burnShares as they are never read
	In OUSGInstantManager::_mint and _redeem cache feeReceiver and only emit fee event if fees are deducted
	Change ROUSG::unwrap to return amount of OUSG output tokens then use that as input when calling _redeem in OUSGInstantManager::redeemRebasingOUSG

