Ondo Global Markets Audit Report

Prepared by Cyfrin
Version 2.0

Lead Auditors
Immeas
Al-Qa'qa’

July 14, 2025

https://cyfrin.io
https://twitter.com/0ximmeas
https://twitter.com/al_qa_qa

Contents

A W DN

About Cyfrin
Disclaimer
Risk Classification

Protocol Summary

41 ActorsandRoles e
42 KeyComponents
4.3 Centralization Risks

Audit Scope
Executive Summary

Findings

71 Low Risk
7.1.1 guardian missing PAUSER_ROLE grant in onUSD deployment
7.1.2 Compliance check discrepancy between onUSDManager and onUSD transfers

7.2 Informational e

7.2.1 OndoSanityCheckOracle::setAllowedDeviationBps is not checking zero value as input

which will introduce problems usingit
7.2.2 |InconsistentunpauseroleinonUSD

7.2.3 GMTokenManager: :mintWithAttestation breaks Check-Effects-Interactions pattern

7.2.4 Inconsistent role for GMTokenManager: : setIssuanceHours
7.2.5 Unnecessary boolean comparisons in GMTokenManager
7.2.6 Inconsistent type usage for IssuanceHours .HOUR_IN_SECONDS
7.2.7 Confusing field name minimumLiveness in PriceData struct
7.2.8 Testenhancements
7.2.9 Natspecenhancements
7.2.10 Missing nonReentrant modifier on GMTokenManager mint/redeem

NN N N N

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High | Impact: Medium | Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

4 Protocol Summary

Ondo Global Markets is a new product by Ondo that enables users to tokenize publicly traded securities on-chain.
KYC’d users can interact with Ondo to purchase GMTokens, which are tokenized representations of real-world
securities. These tokens can then be freely traded on-chain. However, GMTokens can only be minted or burned
during normal trading hours (24/5).

The system also introduces a stablecoin, USDon, which represents cash held by Ondo at a brokerage. This is
the token used to purchase securities. A dedicated contract, usdonManager, facilitates swaps into USDon from
supported stablecoins (e.g., USDC).

To enhance safety, the protocol includes a sanity check oracle, which ensures that prices for securities do not
deviate significantly from a previously posted reference price. This prevents malicious or erroneous off-chain input
from resulting in incorrect or unbacked token mints.

4.1 Actors and Roles

1. Actors

» Off-chain service: Executes the actual buying and selling of real-world securities. Signs attestations for
minting and redeeming.

+ Ondo team: Manages contracts, updates configurations, and oversees system integrity.

» Users: Must complete KYC to participate. Once approved, they can buy and sell tokenized securities.
2. Roles

» DEFAULT_ADMIN_ROLE: Grants/revokes all other roles and manages system-level configuration.

+ CONFIGURER_ROLE: Configures protocol parameters and contract references.

» DEPLOYER_ROLE: Deploys new GMTokens.

https://cyfrin.io

+ ATTESTATION_SIGNER_ROLE: Signs EIP-712-compliant attestations for mint/redeem operations. Must be held
by an EOA.

» MINTER_ROLE: Allows minting of GMTokens and USDon. Held by GMTokenManager and usdonManager.
» BURNER_ROLE: Allows burning of GMTokens and USDon. Held by GMTokenManager and usdonManager.
» PAUSER_ROLE / PAUSE_TOKEN_ROLE: Authorized to pause contracts and token transfers.

» UNPAUSER_ROLE / UNPAUSE_TOKEN_ROLE: Authorized to unpause contracts and token transfers.

» TOKEN_FACTORY_ROLE: Used by GMTokenFactory to deploy new token contracts.

4.2 Key Components

» USDon: A stablecoin backed by cash held at a brokerage. It can only be held or transferred by compliant
(non-OFAC) users. It is pausable.

* usdonManager: An RWAManager contract that enables users to swap supported stablecoins into USDon.

* GMTokens: Tokenized representations of public securities. Can only be held or transferred by compliant users.
Pausable for safety via a shared mechanism in TokenPauseManager, which can pause or unpause all tokens
globally or individually.

* GMTokenManager: Manages the buying and selling of GMTokens. Integrates with usdonManager to allow
swaps from other stablecoins into USDon. Enforces compliance, trading hour restrictions (24/5), and sanity-
checked pricing to prevent deviation from posted oracle prices.

4.3 Centralization Risks

These contracts are heavily managed by the Ondo team, so using this protocol requires a high level of trust in
Ondo’s operational security. If Ondo’s privileged wallets were ever compromised, the consequences could be
catastrophic for the protocol. Extreme care must be taken to safeguard admin keys and related infrastructure.

5 Audit Scope

All files under contracts/globalMarkets:

contracts/globalMarkets/GMTokenCompliance/OndoComplianceGMClientUpgradeable.sol
contracts/globalMarkets/GMTokenCompliance/OndoComplianceGMView.sol
contracts/globalMarkets/issuanceHours/IssuanceHours.sol
contracts/globalMarkets/onUSDManager/onUSDManager.sol
contracts/globalMarkets/sanityCheckOracle/OndoSanityCheckOracle.sol
contracts/globalMarkets/tokenFactory/GMTokenFactory.sol
contracts/globalMarkets/tokenManager/GMTokenManager.sol
contracts/globalMarkets/tokenPauseManager/TokenPauseManager.sol
contracts/globalMarkets/tokenPauseManager/TokenPauseManagerClientUpgradeable.sol
contracts/globalMarkets/BridgeRegistrarStub.sol
contracts/globalMarkets/GMToken.sol

contracts/globalMarkets/onUSD.sol

contracts/globalMarkets/onUSDFactory.sol
contracts/globalMarkets/TokenManagerRegistrar.sol

6 Executive Summary

Over the course of 10 days, the Cyfrin team conducted an audit on the Ondo Global Markets smart contracts
provided by Ondo. In this period, a total of 12 issues were found.

https://github.com/ondoprotocol/rwa-internal.git
https://ondo.finance/

The audit uncovered two low-severity issues: The first involved a missing role grant during the deployment of
USDon. The second concerned a discrepancy between the compliance check used when minting/redeeming USDon
and the one used during token transfers.

Several informational findings were also identified, covering best practices, code quality, and opportunities for
improvement in testing and documentation.

During the audit, the team renamed the USD stablecoin from onUSD to USDon. This change was introduced in
commit 85d5b09 and was deemed safe.

The Cyfrin team also contributed test enhancements, included in commit d315540.

Summary
Project Name Ondo Global Markets
Repository rwa-internal
Commit a74d03f4a71b. ..
Audit Timeline Jul 1st - Jul 14th, 2025
Methods Manual Review

Issues Found

Critical Risk 0
High Risk 0
Medium Risk 0
Low Risk 2
Informational 10
Gas Optimizations | 0
Total Issues 12

Summary of Findings

[L-1] guardian missing PAUSER_ROLE grant in onUSD deployment Resolved

[L-2] Compliance check discrepancy between onUSDManager and onUSD trans- | Acknowledged
fers

[I-1] OndoSanityCheckOracle::setAllowedDeviationBps is not checking | Resolved
zero value as input which will introduce problems using it

[I-2] Inconsistent unpause role in onUSD Resolved

[I-3] GMTokenManager::mintWithAttestation breaks Check-Effects- | Resolved
Interactions pattern

[I-4] Inconsistent role for GMTokenManager : : setIssuanceHours Resolved

[I-5] Unnecessary boolean comparisons in GMTokenManager Resolved

https://github.com/ondoprotocol/rwa-internal/commit/85d5b09996b6216af5faea3c42586a1d72545a41
https://github.com/ondoprotocol/rwa-internal/pull/469/commits/d3155d09d8bb0ed48b7975d758830fc60c36e525
https://github.com/ondoprotocol/rwa-internal.git
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4

[I-6] Inconsistent type usage for IssuanceHours.HOUR_IN_SECONDS Resolved
[I-7] Confusing field name minimumLiveness in PriceData struct Resolved
[I-8] Test enhancements Resolved
[1-9] Natspec enhancements Resolved
[I-10] Missing nonReentrant modifier on GMTokenManager mint/redeem Resolved

7 Findings

7.1 Low Risk
7.1.1 guardian missing PAUSER_ROLE grant in onUSD deployment

Description: Deployment of the onUSD token is handled via the onUSDFactory, which sets up the token as an
upgradeable proxy using the transparent proxy pattern (EIP-1967).

As documented in the contract comments, the guardian address is expected to be granted both the DEFAULT_-
ADMIN_ROLE and PAUSER_ROLE:

globalMarkets/onUSDFactory.sol#L.33-36

/**
* Following the above mentioned deployment, the address of the onUSD_Factory contract will:
* 1) Grant the “DEFAULT_ADMIN_ROLE™ & PAUSER_ROLE to the “guardian’ address <<----------------
* 11) Revoke the MINTER_ROLE", “PAUSER_ROLE" & "DEFAULT_ADMIN_ROLE" from address(this).
* 111) Transfer ownership of the Prozyddmin to that of the “guardian’ address.
*/

However, in the actual deployment logic, only the DEFAULT_ADMIN_ROLE is granted to the guardian. The PAUSER_-
ROLE is omitted:

globalMarkets/onUSDFactory.sol#L.88

function deployonUSD(...) external onlyGuardian returns (address, address, address) {
// @audit “PAUSER_ROLE® not granted to guardian
>> onusdProxied.grantRole (DEFAULT_ADMIN_ROLE, guardian);
onusdProxied.revokeRole (MINTER_ROLE, address(this));
onusdProxied.revokeRole (PAUSER_ROLE, address(this));

onusdProxied.revokeRole (DEFAULT_ADMIN_ROLE, address(this));

onusdProxyAdmin.transferOwnership(guardian) ;

assert (onusdProxyAdmin.owner () == guardian);
initialized = true;

emit onUSDDeployed(...);

return (...);

As a result, deployment completes without the guardian address having the PAUSER_ROLE in the onUSD token
contract, contrary to the intended and documented behavior.

Impact: The guardian will not have the PAUSER_ROLE in the deployed onUSD token contract. This prevents them
from pausing the token immediately after deployment, potentially limiting their ability to respond to emergencies
or enforce compliance controls. However, since the guardian retains the DEFAULT_ADMIN_ROLE, they can manually
grant themselves the PAUSER_ROLE later. Still, this deviates from the intended one-step initialization flow and
introduces the risk of operational oversight.

Recommended Mitigation: Grant the PAUSER_ROLE to the guardian address immediately after assigning the
DEFAULT_ADMIN_ROLE, to match both the contract’s intended behavior and its documentation:

onusdProxied.initialize(name, ticker, complianceView);

onusdProxied.grantRole (DEFAULT_ADMIN_ROLE, guardian);
+ onusdProxied.grantRole (PAUSER_ROLE, guardian);

onusdProxied.revokeRole (MINTER_ROLE, address(this));

https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSDFactory.sol#L33-L36
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSDFactory.sol#L88

onusdProxied.revokeRole (PAUSER_ROLE, address(this));

Ondo: Fixed in commit b13a651. It's the comment that is incorrect here - we only want to grant the default admin
role, as it is temporarily used by the deployment EOA to configure the contract properly. Once configured, the
default admin is renounced. If the pauser was also granted to the EOA on deployment it would just require another
call to renounce

Cyfrin: Verified. Comment removed.

7.1.2 Compliance check discrepancy between onUSDManager and onUSD transfers

Description: When minting or redeeming onUSD via onUSDManager, the contract extends BaseRWAManager, which
performs a compliance check using the onUSD token address (address(onUSD)) as the rwaToken identifier. This
happens in BaseRWAManager: : _processSubscription:

// Reverts if user address is not compliant
ondoCompliance.checkIsCompliant (rwaToken, _msgSender());

The same check occurs during redemptions via BaseRWAManager: : _processRedemption.

Separately, the onUSD token contract itself performs compliance checks inside onUSD: : _beforeTokenTransfer,
which is invoked during transfers, minting, and burning. This function calls the inherited OndoComplianceGMClien-
tUpgradeable: : _checkIsCompliant, which delegates to OndoComplianceGMView: : checkIsCompliant:

function checkIsCompliant(address user) external override {
compliance.checkIsCompliant (gmIdentifier, user);

}

Here, OndoComplianceGMViewgmIdentifier is a hardcoded address derived from the string "global_markets"
and used as the rwaToken identifier:

address public gmIdentifier =
address (uint160 (uint256 (keccak256 (abi.encodePacked("global_markets")))));

As a result, minting and redeeming will trigger two compliance checks with different identifiers:
* address (onUSD) via the manager logic
» gmIdentifier via the token's _beforeTokenTransfer

Impact: Although _beforeTokenTransfer runs during minting and burning, meaning both compliance checks still
occur, the use of two different rwaToken identifiers introduces an unnecessary inconsistency. If the two compliance
lists are not aligned, minting or redeeming could revert unexpectedly, despite the user being compliant under one
identifier.

Recommended Mitigation: There are two possible mitigation approaches, depending on which compliance iden-
tifier is intended as canonical for onUSD.

1) Update OnUSD: : _beforeTokenTransfer to explicitlly use address(this) as the rwaToken in all compliance
checks. This aligns the transfer/mint/burn logic with the identifier used in the manager’s mint/redeem flow,
ensuring consistency and eliminating the need to maintain two separate compliance lists.

if (from !'= msg.sender && to !'= msg.sender) {
compliance.checkIsCompliant (address(this), msg.sender);

}

if (from !'= address(0)) {
// If not minting
compliance.checkIsCompliant (address(this), from);

}

if (to != address(0)) {
// If not burning

https://github.com/ondoprotocol/rwa-internal/pull/472/commits/b13a651ae927e972a5c1478080fbe37e85409071
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/xManager/rwaManagers/BaseRWAManager.sol#L171-L172
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/xManager/rwaManagers/BaseRWAManager.sol#L243-L244
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSD.sol#L168-L180
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/gmTokenCompliance/OndoComplianceGMClientUpgradeable.sol#L86-L88
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/gmTokenCompliance/OndoComplianceGMClientUpgradeable.sol#L86-L88
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/gmTokenCompliance/OndoComplianceGMView.sol#L75-L81
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/gmTokenCompliance/OndoComplianceGMView.sol#L34-L36

compliance.checkIsCompliant (address(this), to);

}

2) If gmIdentifier is intended to serve as a shared compliance identity for global markets assets (including
onUSD), consider using gmIdentifier in the onUSDManager mint/redeem flow as well. This would unify all
compliance checks under a single identifier, reducing operational fragmentation.

Ondo: Acknowledged. The OndoCompliance check in the USDonManager only exists due to the USDonManager
inheriting the BaseRWAManager - since the check already exists in USDon transfers themselves it would be completely
redundant if used. Knowing this, we will leave the sanctions and blocklist unset for USDon in OndoCompliance SO
that the checks coming from the USDonManager are effectively bypassed, and we instead rely on checks stemming
from USDon transfers themselves and keyed on the gmIdentifier.

7.2 Informational

7.2.1 OndoSanityCheckOracle::setAllowedDeviationBps is hot checking zero value as input which will
introduce problems using it

Description: In OndoSanityCheckOracle, there are two types of deviation values: a default deviation applied to
all tokens by default, and a token-specific deviation set per asset via setAllowedDeviationBps().

The default deviation value is validated to be non-zero, while token-specific deviations can be set to zero:
OndoSanityCheckOracle.sol#L222-1.245

function setAllowedDeviationBps(...) external onlyRole(CONFIGURER_ROLE) {
if (bps >= BPS_DENOMINATOR) revert InvalidDeviationBps();
prices[token].allowedDeviationBps = bps;
emit AllowedDeviationSet(token, bps);

}

function setDefaultAllowedDeviationBps(...) public onlyRole(CONFIGURER_ROLE) {
if (bps == 0) revert InvalidDeviationBps(); // enforced here
if (bps >= BPS_DENOMINATOR) revert InvalidDeviationBps();
emit DefaultAllowedDeviationSet(defaultDeviationBps, bps);
defaultDeviationBps = bps;

Setting a token deviation to zero is functionally meaningless, however, because zero is interpreted as “use the
default” during price posting:

OndoSanityCheckOracle.sol#L189-L192

if (priceData.allowedDeviationBps == 0) {
priceData.allowedDeviationBps = defaultDeviationBps;
emit AllowedDeviationSet(token, priceData.allowedDeviationBps);

}

This creates a subtle inconsistency: the contract accepts 0 as a valid input for per-token deviations, but the value
will be ignored and overridden when posting a price. If zero deviation is considered too strict or unsupported,
enforce a bps > 0 check in setAllowedDeviationBps(), mirroring the validation in setDefaultAllowedDevia-
tionBps().

Alternatively, if 0 is meant to indicate “use default,” consider introducing an explicit boolean field to track whether a
token’s deviation has been explicitly set, rather than relying on 0 as a sentinel value.

Ondo: Fixed in commit 6a33346

Cyfrin: Verified. allowedDeviationBps is not allowed to be 0.

7.2.2 Inconsistent unpause role in onUSD

Description: onUSD: :unpause is restricted to DEFAULT_ADMIN_ROLE, unlike other contracts in the system that use
a dedicated UNPAUSER_ROLE. This breaks consistency in access control design and limits flexibility in delegating
unpause authority:

function unpause() public override onlyRole(DEFAULT_ADMIN_ROLE) {
_unpause () ;

}

Consider using UNPAUSER_ROLE for onUSD: : unpause to align with the pattern used across other contracts.
Ondo: Fixed in commit 650c527
Cyfrin: Verified. UNPAUSER_ROLE used in USDon: : unpause (renamed)

https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/sanityCheckOracle/OndoSanityCheckOracle.sol#L222-L245
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/sanityCheckOracle/OndoSanityCheckOracle.sol#L189-L192
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/6a333464ee54fe04957331c270ce185a44e5e528
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSD.sol#L200-L202
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/650c527100dbb655e9a485a5568c7796fdde3cc1

7.2.3 GMTokenManager: :mintWithAttestation breaks Check-Effects-Interactions pattern

Description: In GMTokenManager: :mintWithAttestation, the function transfers tokens from the user before per-
forming internal accounting operations such as rate limiting, burning, and minting. This violates the check-effects-
interactions pattern, where external calls (like token transfers) should typically come after all internal state updates
to reduce risk.

While the token being transferred is assumed to be a trusted stablecoin, this ordering increases the surface area
for unexpected behavior if any integrated token misbehaves (e.g., via callback hooks, pausable logic, or fee-on-
transfer behavior).

Consider reordering operations in mintWithAttestation to follow the check-effects-interactions
pattern—performing rate limiting, burns, and mints before calling token.transferFrom().

Ondo: Fixed in commit 29bdeb9

Cyfrin: Verified. rate limiting now done before external calls.

7.2.4 Inconsistent role for GMTokenManager: : setIssuanceHours

Description: The GMTokenManager: : setIssuanceHours function is restricted to CONFIGURER_ROLE, whereas other
configuration and role assignment functions across the system are typically restricted to DEFAULT_ADMIN_ROLE. This
inconsistency may cause confusion about which roles are responsible for governance and configuration actions.

Consider aligning access control by restricting setIssuanceHours to DEFAULT_ADMIN_ROLE, consistent with similar
configuration functions elsewhere.

Ondo: Fixed in commit 3d18299

Cyfrin: Verified. DEFAULT_ADMIN_ROLE is now used for GMTokenManager : : setIssuanceHours.

7.2.5 Unnecessary boolean comparisons in GMTokenManager

Description: Both in GMTokenManager::_verifyQuote#L329 and GMTokenManager: :adminProcessMint#L389
there's a boolean comparison:

if (gmTokenAccepted[gmToken] == false) revert GMTokenNotRegistered(); ‘

This is redundant. Consider simplifying it to:

if (!gmTokenAccepted[gmToken]) revert GMTokenNotRegistered();

Ondo: Fixed in commit 1877211
Cyfrin: Verified.

7.2.6 Inconsistent type usage for IssuanceHours.HOUR_IN_SECONDS

Description: In IssuanceHours the constant IssuanceHours.HOUR_IN_SECONDS field is declared as uint, while
the rest of the codebase consistently uses uint256:

/// Constant for the number of seconds in an hour
uint constant HOUR_IN_SECONDS = 3_600;

Consider updating the field to use uint256 to align with the project's standard type declarations.
Ondo: Fixed in commit fe452a1

Cyfrin: Verified. HOUR_IN_SECONDS uses type int256 (since that removes a cast in _validateTimezoneOffset)

10

https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L196-L231
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/29bdeb92b8de97be3de6a60d78bf91449be90827
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L400-L410
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/3d18299bab888ef204073581d92ffbc3de13ad30
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L329
http://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L389
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/1877211865727c6ae6e1587550266a43973d722c
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/issuanceHours/IssuanceHours.sol#L38
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/fe452a120f8afde757d19736c44b26d4b07fbca3

7.2.7 Confusing field name minimumLiveness in PriceData struct

Description: The PriceData struct in OndoSanityCheckOracle includes a field named minimumLiveness, which
actually represents the maximum age a price can be before it's considered stale. The current name may be
misleading, as "minimum liveness" implies a lower bound on freshness rather than an upper bound on staleness.

Consider renaming the field to something clearer like maxPriceAge or staleThreshold to better reflect its purpose
and improve code readability.

Ondo: Fixed in commits b453b57 and 9af9735

Cyfrin: Verified. Renamed to maxTimeDelay.

7.2.8 Test enhancements

Description: * GMIntegrationTest_GM_ETH: Both tests test_hitRatelLimits_onUSDInGMFlow_Subscribe and
test_hitRateLimits_onUSDInGMFlow_Redeem have empty expectReverts:

// Should fail due to onUSD rate limit
vm. expectRevert () ;
gmTokenManager .mintWithAttestation(
quote,
signature,
address (USDC),
usdcAmount

)

Accepting any revert could hide unexpected errors allowing bugs to still pass the tests. Consider catching the
expected revert:

// Should fail due to onUSD rate limit
- vm.expectRevert();
+ vm.expectRevert (OndoRateLimiter.RateLimitExceeded.selector);
gmTokenManager .mintWithAttestation(
quote,
signature,
address (USDC) ,
usdcAmount

)

GmTokenManagerSanityCheckOracleTest: The test testPostPricesWithInvalidInput also has an empty
expectRevert (). This test should ideally be split into two, ...WithInvalidToken, ...WithInvalidPrice
and expect the correct errors: InvalidAddress and PriceNotSet.

error TokenPauseManagerClientUpgradeable.TokenPauseManagerCantBeZero lacks a test. Consider
adding one for assigning an invalid TokenPauseManager.

GMTokenManagerTest_ETH: The test testMintFromNonKYCdSender mentions a "KYC role" which doesn't exist.
It also catches an empty revert on L626. This catch does not catch the correct error, it catches a OneRate-
Limiter.RatelLimitExceeded error since the user has no rate limit config. Since the user is added to the
registry on L601, effectively saying it's KYC'd. Thus it passes the KYC check. Consider removing mentions
of a KYC role, catching the correct revert (IGMTokenManagerErrors.UserNotRegistered) and remove the
addition of the user to the registry.

Cyfrin: Fixed by Cyfrin in commit d3155d0

7.2.9 Natspec enhancements

Description: * onUSD_Factory: :deployonUSD is missing the complianceView parameter in its natspec.
* onUSD_Factory.onUSDDeployed event is missing parameters name, ticker, and complianceView

* GMTokenManager: : constructor iS missing _onUsd parameter

11

https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/sanityCheckOracle/OndoSanityCheckOracle.sol#L37-L49
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/b453b57a8785ee7905d8dc46bee47694f43f152c
https://github.com/ondoprotocol/rwa-internal/pull/470/commits/9af9735587341a0c97a04ce00ace905406b87e8c
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/GM_IntegrationTest.t.sol#L1209-L1210
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/GM_IntegrationTest.t.sol#L1254-L1255
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/tokenManager/GmTokenManagerSanityCheckOracleTest.t.sol#L563-L577
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/tokenManager/GmTokenManagerTest.t.sol#L587-L629
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/tokenManager/GmTokenManagerTest.t.sol#L626
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/forge-tests/globalMarkets/tokenManager/GmTokenManagerTest.t.sol#L601
https://github.com/ondoprotocol/rwa-internal/pull/469/commits/d3155d09d8bb0ed48b7975d758830fc60c36e525
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSDFactory.sol#L54-L76
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/onUSDFactory.sol#L113-L126
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L140-L156

* GMTokenManager: :adminProcessMint is missing gmToken parameter

* TokenPauseManager: :unpauseAllTokens: the text Only affects tokens paused by the
pauseAllTokens function could be worded better as this is all tokens.

Ondo: Fixed in commit d7dc414
Cyfrin: Verified.

7.2.10 Missing nonReentrant modifier on GMTokenManager mint/redeem

Description: The GMTokenManager: :mintWithAttestation and GMTokenManager::redeemWithAttestation
functions perform external token transfers and internal state updates but do not use the nonReentrant modifier.
While GMTokenManager inherits from OpenZeppelin's ReentrancyGuard, which is currently unused, the modifier is
not applied to these functions.

Consider adding the nonReentrant modifier to mintWithAttestation and redeemWithAttestation.
Ondo: Fixed in commit d7dc414
Cyfrin: Verified.

12

https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L376-L398
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenPauseManager/TokenPauseManager.sol#L105-L113
https://github.com/ondoprotocol/rwa-internal/pull/471/commits/d7dc4144d42a5edb04a25814f42a677c8b798723
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L170-L175
https://github.com/ondoprotocol/rwa-internal/blob/a74d03f4a71bd9cac09e8223377b47f7d64ca8d4/contracts/globalMarkets/tokenManager/GMTokenManager.sol#L248-L253
https://github.com/ondoprotocol/rwa-internal/pull/471/commits/d7dc4144d42a5edb04a25814f42a677c8b798723

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Actors and Roles
	Key Components
	Centralization Risks

	Audit Scope
	Executive Summary
	Findings
	Low Risk
	guardian missing PAUSER_ROLE grant in onUSD deployment
	Compliance check discrepancy between onUSDManager and onUSD transfers

	Informational
	OndoSanityCheckOracle::setAllowedDeviationBps is not checking zero value as input which will introduce problems using it
	Inconsistent unpause role in onUSD
	GMTokenManager::mintWithAttestation breaks Check-Effects-Interactions pattern
	Inconsistent role for GMTokenManager::setIssuanceHours
	Unnecessary boolean comparisons in GMTokenManager
	Inconsistent type usage for IssuanceHours.HOUR_IN_SECONDS
	Confusing field name minimumLiveness in PriceData struct
	Test enhancements
	Natspec enhancements
	Missing nonReentrant modifier on GMTokenManager mint/redeem

