CAMNTINM

Ondo PR 520

Security Review

Cantina Managed review by:
Giovanni Di Siena, Lead Security R
Chinmay Farkya, Security Researc

February 6, 2026

Contents

1 Introduction
1.1 About Cantina o e e e e
1.2 Disclaimer . . . o e e
1.3 Riskassessment e e
1.3.1 Severity Classification e

2 Security Review Summary
2.7 SCOPE . . e e e

3 Findings
3.1 Low Risk o o
3.1.1 Batch execution of limitorderscanbe DOS'ed
3.1.2 Precision loss due to sequential divisions in calculateQuoteAmount() can under-
charge BUY orders o i e e
3.2 GasOptimization e e e e e e e
3.2.1 ReentrancyGuardTransient can be used to save gas on all nonReentrant calls
3.3 Informational e
3.3.1 LimitOrderLib::calculateQuoteAmount can round down to zero for small buy
OrderS . o e
3.3.2 Partialfills of buy orders can result in user losses due to the absence of refunds . . .
3.3.3 Incorrect mocked quotetypehash L

1 Introduction

1.1 About Cantina

Cantina is a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High
findings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be
fixed as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings are a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not impact
the project’s overall security (Gas and Informational findings).

https://cantina.xyz

2 Security Review Summary

Ondo's mission is to make institutional-grade financial products and services available to everyone.

From Jan 31st to Feb 2nd the Cantina team conducted a review of rwa-internal on commit hash e89c9020.
The team identified a total of 6 issues:

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 0
High Risk 0
Medium Risk 0
Low Risk 2
1
3
6

Gas Optimizations
Informational
Total

(O] el Bl Bl @] ol Ne]
WIN|O|—=|O|O|O

2.1 Scope
The security review had the following components in scope for rwa-internal on commit hash e89¢9020:

contracts
— globalMarkets
L— tokenManager
L— IGMTokenManager.sol
— limit-order
— GMTokenLimitOrder.sol
— IGMTokenLimitOrder.sol
F— LimitOrderLib.sol
L — LimitOrderStorage.sol
— xManager
L interfaces
L— IOndoIDRegistry.sol

https://github.com/ondoprotocol/rwa-internal
https://github.com/ondoprotocol/rwa-internal/tree/e89c90209f860216479bd9ae6a8ffcaef917c7ef/
https://github.com/ondoprotocol/rwa-internal
https://github.com/ondoprotocol/rwa-internal/tree/e89c90209f860216479bd9ae6a8ffcaef917c7ef/

3 Findings

3.1 Low Risk
3.1.1 Batch execution of limit orders can be DOS'ed

Severity: Low Risk
Context: GMTokenLimitOrder.sol#L323-L327

Description: The executeOrderBatch() function is used to fill multiple orders at once, and it follows a
complete-or-fail approach. If any of the orders' execution reverts, the whole batch reverts.

There are multiple ways in which users can purposefully DoS a batch execution by manipulating one of
their orders included in that batch.

« User can frontrun executeOrderBatch() to cancel their own order, which marks it as CANCELLED
and reverts.

+ A token approval from user to the LimitOrder contractis required in order to proceed with order
execution, but the tokens are not escrowed and remain in the user's wallet until execution. Thus, a
user can frontrun executeOrderBatch() to revoke their token approval at the last moment, thus
reverting the whole batch transaction.

The problem here is that the batch will also include orders from other users, whose execution can be
repeatedly made to fail.

Recommendation: Consider implementing executeOrderBatch() in such a way that if any of the
orders' execution fails due to any reason, the logic can continue to execute other orders successfully.

Ondo: Acknowledged: We intentionally chose atomic batch execution to avoid the indeterminate control
flow introduced by a try/catch pattern. Monitoring and operational mitigations are sufficient from our
view - failed batches can be resubmitted excluding the problematic order, and persistent bad actors can
be removed via admin cancellation or compliance revocation. Additionally, executors can always revert to
single-order execution as a fallback.

Cantina Managed: Acknowledged.

3.1.2 Precision loss due to sequential divisions in calculateQuoteAmount () can undercharge BUY
orders

Severity: Low Risk
Context: LimitOrderLib.sol#L347-L.354

Description: LimitOrderLib::calculateQuoteAmount suffers from precision loss due to interme-
diate truncation caused by performing two sequential divisions instead of a single combined division.
quantity * price is first divided by 18, then further scaled up by the token decimals before the condi-
tional rounding logic is applied; however, performing the computation in two division steps introduces
intermediate truncation that can silently discard fractional value before the rounding logic executes. This
edge case manifests for USDC when (quantity * price) % lel2 iszero and can resultin BUY orders
being undercharged by one wei.

Proof of Concept: The following test should be added to GMTokenLimitOrder.t.sol:

function test calculateQuoteAmount precisionLoss USDC() public view {
// Example values:
// quantity = lel7 (0.1 GM token)
// price = 1el8 + 1 ($1.000000000000000001)
// quantity * price = 1e35 + lel7
// q = lel7, r = 1lel7
//
// Current Implementation:
// Step 1: usdValue = (1e35 + 1lel7) / 1el8

// usdValue = floor(100000000000000000.1)
// usdValue = 1el7 [LOST: remainder 1lel7]
//

// Step 2: scaled = 1lel7 * le6 = 1le23

https://cantina.xyz/code/ce8c7790-09fe-4384-9f1f-3de3b2a51d3d/contracts/limit-order/GMTokenLimitOrder.sol#L323-L327
https://cantina.xyz/code/ce8c7790-09fe-4384-9f1f-3de3b2a51d3d/contracts/limit-order/LimitOrderLib.sol#L347-L354

// Step 3: result

ceil(1le23 / 1el8)

// result = ceil(100000.0) « EXACT INTEGER
// result = 100000
//

// Correct Implementation:
// numerator = (1e35 + 1lel7) * 1le6 = led4l + 1le23
// result = ceil((led4l + 1e23) / 1le36)

// = ceil(100000.0000000000001) ~ HAS FRACTIONAL PART
// = 100001
//

// USDC Result: Current = 100000, Correct = 100001
// LOSS OF 1 UNIT ($0.000001)

uint256 quantity = 1lel7;
uint256 price = 1el8 + 1;

IGMTokenManager.Quote memory quote = IGMTokenManager.Quote({
chainId: block.chainid,
attestationId: 1,
userId: TEST USER ID,
asset: address(gmToken),
price: price,
quantity: quantity,
expiration: block.timestamp + 1 hours,
side: IGMTokenManager.QuoteSide.BUY,
additionalData: bytes32(0)

13N

// Current implementation result
uint256 currentResult = harness.calculateQuoteAmount(quote, address(usdc));

// Correct implementation result
uint256 numerator = quantity * price * 1le6;
uint256 correctResult = (numerator + 1e36 - 1) / 1le36;

assertEq(currentResult, 100000, "Current implementation should return 100000");
assertEq(correctResult, 100001, "Correct implementation should return 100001");
assertApproxEgAbs(correctResult, currentResult, 1, "Implementations should differ by 1
— Wei”);

}

Recommendation: Consider refactoring to perform all arithmetic in a single division operation, preserving
full precision until the final rounding step. The corrected implementation combines the scaling factor into
the numerator and uses a single denominator to ensure that no intermediate remainder is discarded
before the rounding decision is made, resulting in correct ceiling behavior for BUY orders and floor behavior
for SELL orders across all quote token decimal configurations.

Ondo: Fixed in commit f760a19.

Cantina Managed: Verified. The computation has been combined into single division to avoid intermediate
truncation precision loss.

3.2 Gas Optimization

3.2.1 ReentrancyGuardTransient can be used to save gas on all nonReentrant calls
Severity: Gas Optimization

Context: (No context files were provided by the reviewer)

Description: The GMTokenLimitOrder.sol contract uses ReentrancyGuard from OpenZeppelin. There
is @ more gas efficient library for blocking reentrancies: ReentrancyGuardTransient.

Recommendation: Consider using ReentrancyGuardTransient.
Ondo: Fixed in commit 201e466.

https://github.com/ondoprotocol/rwa-internal/pull/521/changes/f760a198e1872c4e2a88c1a383a0deb3f73eccb3
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuardTransient.sol
https://github.com/ondoprotocol/rwa-internal/pull/521/commits/201e466043375aa74a0d3e82346de26ea3de7ace

Cantina Managed: Verified.

3.3 Informational
3.3.1 LimitOrderLib::calculateQuoteAmount can round down to zero for small buy orders

Severity: Informational
Context: LimitOrderLib.sol#L347

Description: The calculation of usdValue within LimitOrderLib: :calculateQuoteAmount canround
down to zero for a sufficiently small quote.quantity * quote.price dividend. This can resultin the
entire function returning zero, as the intended rounding up behavior for buy side orders is not applied.
In the absence of minimumDepositUSD validation within GMTokenManager, this could be abused to
systematically extract value from the protocol without paying any quote token.

Recommendation: Ensure that minimumDepositUSD is always configured to be non-zero.

Ondo: Acknowledged: The minimumDepositUSD parameter in GMTokenManager will always be config-
ured to a non-zero value in production. There is no operational reason to ever allow ~zero-value deposits.

Cantina Managed: Acknowledged.

3.3.2 Partial fills of buy orders can result in user losses due to the absence of refunds

Severity: Informational
Context: LimitOrderLib.sol#1322-L.336

Description: LimitOrderLib::validateExecution performs validation to protect users from over-
spending the GM token allowance intended for EXACT QUOTE sell orders; however, there is no equivalent
validation for EXACT QUOTE buy orders. The earlier price check ensures quote.price <= limitPrice,
but there is no check that the user receives a minimum amount of GM tokens. Without it, an executor
can provide a quote with a valid price (at or below the limit) but a quote.quantity much lower than
expected. Consider the following scenario:

1. LimitOrderLib: :executeBuy pulls order.exactAmount (e.g., 100 USDC) from the user.
2. Calls gmTokenManager.mintWithAttestation(quote, sig, USDC, 100e6).

3. GMTokenManager calculates mintUSDonValue = quote.quantity * quote.price(e.g.,5x $10
= $50).

4. Converts all 100 USDC — 100 USDon.

5. Uses only 50 USDon for minting, refunds 50 USDon to GMTokenLimitOrder.
6. Mints 5 GM tokens to GMTokenLimitOrder.

7. GMTokenLimitOrder transfers 5 GM to the user.

To summarise, the user pays 100 USDC but receives only 5 GM tokens worth ~$50 while the excess 50
USDon remains stuck in GMTokenLimitOrder.

It is understood that this scenario can, in practice, occur only if the market gaps down, in which case the
protocol still acts as expected despite being potentially unfavorable for users. In any case, the question
remains whether excess funds should be refunded to the user. Currently, it is intended to avoid returning
small balances of a separate token to avoid confusion, e.g. createSellOrderExactOut() will return
exactly the USDC specified, even if the swap itself results in slightly more being received. However, given
that there is nothing strictly preventing partial fills in the above edge case, the discrepancy between the
returned and refunded amounts could be significant.

Recommendation: Consider returning refunded tokens to the user.

Ondo: Acknowledged. This contract is purpose-built for a streamlined UX flow. Under nominal market
conditions, any USDon refund would be negligible (well under 1 cent), and automatically returning a
secondary token on every trade would only confuse users. For the unlikely edge case of a significant
market gap on these tradfi-backed assets, any material excess can be retrieved via retrieveTokens ()
and returned to the affected user manually. We accept this operational trade-off to preserve clean UX for
the common case.

https://cantina.xyz/code/ce8c7790-09fe-4384-9f1f-3de3b2a51d3d/contracts/limit-order/LimitOrderLib.sol#L347
https://cantina.xyz/code/ce8c7790-09fe-4384-9f1f-3de3b2a51d3d/contracts/limit-order/LimitOrderLib.sol#L322-L336

Cantina Managed: Acknowledged.

3.3.3 Incorrect mocked quote typehash
Severity: Informational
Context: GMTokenLimitOrder.t.sol#L49

Description: While it does not affect the existing tests, the mocked quote typehash is incorrect and should
be updated to match the actual implementation.

Recommendation: Use bytes32 additionalData in place of bytes additionalData.
Ondo: Fixed in commit dd6e841.

Cantina Managed: Verified.

https://cantina.xyz/code/ce8c7790-09fe-4384-9f1f-3de3b2a51d3d/forge-tests/limit-order/GMTokenLimitOrder.t.sol#L49
https://github.com/ondoprotocol/rwa-internal/pull/521/commits/dd6e84100cf442a206fd804edd6c5cbd90db4c4c

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Scope

	Findings
	Low Risk
	Batch execution of limit orders can be DOS'ed
	Precision loss due to sequential divisions in calculateQuoteAmount() can undercharge BUY orders

	Gas Optimization
	ReentrancyGuardTransient can be used to save gas on all nonReentrant calls

	Informational
	LimitOrderLib::calculateQuoteAmount can round down to zero for small buy orders
	Partial fills of buy orders can result in user losses due to the absence of refunds
	Incorrect mocked quote typehash

