FYEO

Ondo

Repo: https://github.com/3uild-3thos/ondo-finance

Security Review Update: November 5, 2025

Reviewer: balthasar@gofyeo.com

FYEDO

Ondo Security Review Update

New security issues, 6

After the development team implemented the latest updates, FYEO conducted a review of the
modifications. The primary goal of this evaluation was to ensure the continued robustness of the
program's security features, safeguarding user funds and maintaining the overall integrity of the program.

General Updates:

The update expands and reworks configuration and constants across the codebase: new chain
and admin keys are added for different build targets, token decimals and scaling factors are
defined, price scaling and price bounds are changed, and several role identifiers and seeds are
introduced or renamed. Defaults and initialization behavior are hardened (rate-used counters
are initialized when limits exist, default windows added), and event emissions were added when
rate limits, pauses, or sanity settings change. Program IDs and linkage between programs were
updated for non-mainnet builds, and various constants and public keys were consolidated into
both the main program and the transfer-hook program.

The business logic and safety checks were significantly enhanced. Attestation-based flow was
introduced so buy/sell operations now require a compact attestation identifier and on-chain
secp256k1 verification via the instructions sysvar, including a digest construction routine and
parsing/validation of the secp instruction. Price sanity checks were tightened and exposed to
configuration (including storing last price), arithmetic was made safer by moving risky
multiplications into u128-buffered helpers, and rate-limiting got a robust linear-decay
implementation with overflow protection and clearer failure messages. The transfer-hook was
made updatable: it can now compute and reallocate storage for extra account metadata, and
the hook program IDs and authority checks were adjusted to match the new constants and
admin model.

FYEDO

ATTESTATION MESSAGE OMITS USER

Finding ID: FYEO-ONDO-01
Severity: High
Status: Open

Description

The attestation digest (the message that is signed and later verified by the secp256k1
instruction) does not include the user public key. The verify attestation function accepts a
_user: Pubkey parameter but the calculate quote hash implementation has the user line
commented out and instead embeds only asset, price, amount, expiration, etc. Because the
signed message does not bind the attestation to a specific Solana user / public-key, a valid
attestation intended for one user can be replayed / used by another user to perform an action on
their behalf.

Proof of Issue

File name: programs/ondo-finance/src/instructions/token_manager.rs
Line: 444

pub fn verify attestation(
sself,
chain id: [u8; 32],
attestation id: [u8; 16],
side: us8,
_user: Pubkey,
asset: Pubkey,
price: u64,
amount: u64,
expiration: 164,

) —> Result<()> {

let quote hash = self.calculate quote hash(
chain id,
attestation id,
side,
asset,
price,
amount,
expiration,

pub fn calculate quote hash (
&self,
chain id: [u8; 32],
attestation id: [u8; 16],
side: us8,
asset: Pubkey,
price: u64,
amount: u64,
expiration: 164,

FYEDO

) —> [u8; 32] {

quote[49..81] .copy from slice(&asset.to bytes());

Severity and Impact Summary

A valid attestation (signature) for (attestation_id, asset, price, ...) can be used by any signer
because the attestation doesn’t cryptographically bind to the Solana user key. This allows
attestation forgery: e.g., attacker or third-party can present a quote intended for Alice and have
Bob execute the same quote.

Recommendation

Include user in the signed message. Modify calculate quote hash to include
user.to bytes () at a fixed offset. Add unit tests that assert an attestation valid for user A is
rejected if submitted by user B.

FYEDO

NO REPLAY PROTECTION: ATTESTATION |IDS ARE NOT RECORDED

Finding ID: FYEO-ONDO-02
Severity: High
Status: Open

Description

Although attestation idis passed into verify attestation and included in the quote hash,
the program does not store or mark attestation IDs as consumed anywhere. That means the
same attestation (valid signature) can be replayed multiple times until its expiration
timestamp, enabling repeated execution of the same authorized action.

Proof of Issue

File name: programs/ondo-finance/src/instructions/token_manager.rs

// No storage access / no marking of attestation id:
let quote hash = self.calculate quote hash (
chain id,
attestation id,
side,
asset,
price,
amount,
expiration,
);
self.verify secp256kl ix(...)?;
msg! ("v Attestation signature verified");
Ok (())

Severity and Impact Summary

Any valid attestation can be used repeatedly until expiration. If an attestation authorizes a
mint, burn, or transfer, it can be executed many times causing loss/theft or token inflation.
Off-chain signers normally expect attestations to be one-time; without on-chain consumption the
attestation semantics are broken.

Recommendation

Record attestation id on first use.

FYEDO

INCORRECT AUTHORITY USED IN BURN_TOKEN CPI

Finding ID: FYEO-ONDO-03

Severity: Low

Status: Open

Description

In the burn token instruction, the CPI context uses the mint authority as the authority
account instead of the actual token account authority.

Proof of Issue

File name: programs/ondo-finance/src/instructions/token_manager.rs
Line number: 904

let cpi accounts = BurnChecked {

mint: self.mint.to account info(),

from: self.user token account.to account info(),

authority: self.mint authority.to account info(), // To be updated with the
actual authority

}i

Severity and Impact Summary

This may not work as intended as the user would need to sign to burn their tokens.

Recommendation

Ensure the authority matches the token account’s actual owner.

FYEDO

MISSING ZERO CHECK FOR LIMIT_WINDOW (POSSIBLE DIVISION BY ZERO)

Finding ID: FYEO-ONDO-04
Severity: Low
Status: Open

Description

The limit window field is used in arithmetic operations without validation. If 1imit window is
Some (0), subsequent division operations will panic, leading to a denial-of-service or unintended
state.

Proof of Issue

File name: programs/ondo-finance/src/instructions/token_manager.rs
Line number: 688

let rate per second = token rate limit
.checked div (token limit window)
.0k or (OndoError: :MathOverflow) ?;

let remainder = token rate limit
.checked rem(token limit window)
.0k or (OndoError: :MathOverflow) ?;

Severity and Impact Summary

Division by zero can cause runtime panics, halting execution of affected transactions.

Recommendation

Validate that token limit window is non-zero before performing any division or remainder
operations. Make sure that the codebase does not accept such configuration in the first place.

FYEDO

HARDCODED ADMIN KEY

Finding ID: FYEO-ONDO-05
Severity: Informational
Status: Open

Description

A hardcoded admin public key (rooT pUBKEY) introduces a single point of failure and centralized
control risk. The mainnet constant is currently a Topo placeholder, which can leave the program
in an uninitialized or insecure state if deployed accidentally.

Proof of Issue

File name: programs/ondo-finance/src/constants.rs
Line number: 12

// Admin Pubkey

#[cfg(feature = "mainnet")]
pub const ROOT PUBKEY: Pubkey = pubkey! ("TODO MAINNET ADMIN PUBKEY") ;
#[cfg(feature = "devnet")]

pub const ROOT PUBKEY: Pubkey =

pubkey! ("2LmKUl zcaxyXMfMxJKoKbSuFtb2E9kWca2QhEV2KEPXX") ;
#[cfg(feature = "localnet")]

pub const ROOT PUBKEY: Pubkey =

pubkey! ("4BZNKxYR1jrx6sZ2S8GVcNtEFxvoiZEnWn6oNdVH8PelNqgq") ;

Severity and Impact Summary

Centralized single key creates governance and compromise risks.

Recommendation

Use a configuration account to store the admin key rather than hardcoding it. Prefer a multisig
for safety.

FYEDO

INCORRECT AND INCONSISTENT EVENT EMISSIONS

Finding ID: FYEO-ONDO-06
Severity: Informational
Status: Open

Description

Several emitted events use inconsistent or incorrect field assignments. In RateLimitTokenSet,
the 1imit window field mistakenly reuses rate 1imit instead of 1imit window, likely a
copy-paste error. In addition, duplicate and conflicting sanityCheckUpdated events reference
different fields (self.operator.key () VS self.mint.key()).

Proof of Issue

File name: programs/ondo-finance/src/instructions/initialize_token_limit.rs
Line number: 71

emit! (crate::events: :RatelLimitTokenSet {

token: self.mint.key(),

limit: if self.token limit.rate limit.is some () {
self.token limit.rate limit } else { self.token limit.default user rate limit
}o

limit window: if self.token limit.limit window.is some () {
self.token limit.rate limit } else { self.token limit.default user limit window
b
1)

emit! (SanityCheckUpdated {
mint: self.operator.key(),

1)

emit! (SanityCheckUpdated {
mint: self.mint.key(),
}) 7

Severity and Impact Summary

Misleading event data can cause off-chain indexers, monitoring tools, or analytics to process
incorrect values. Duplicate and inconsistent events reduce auditability and trace accuracy.

Recommendation

Correct the event field mappings. Standardize the sanityCheckUpdated event to consistently
reference the correct account key.

FYEDO

Commit Hash Reference:

For transparency and reference, the security review was conducted on the specific commit hash for the
Ondo repository. The commit hash for the reviewed versions is as follows:

a3688c5cb249e45¢c93ceb6f4ac1bab1333d68d2dc

Conclusion:

In conclusion, the security aspects of the Ondo program remain robust and unaffected by the recent
updates. Users can confidently interact with the protocol, assured that their funds are well-protected. The
commitment to security exhibited by the development team is commendable, and we appreciate the
ongoing efforts to prioritize the safeguarding of user assets.

	
	Ondo
	Ondo Security Review Update
	New security issues, 6
	General Updates:
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	Description
	Proof of Issue

	Severity and Impact Summary
	Recommendation
	
	Commit Hash Reference:
	Conclusion:

