
Ondo Bridge Registrar
& USDon Converter
Security Review

Solo review by:

Sujith Somraaj, Security Researcher

October 9, 2025

Contents

1 Introduction 2
1.1 About Cantina . 2
1.2 Disclaimer . 2
1.3 Risk assessment . 2

1.3.1 Severity Classification . 2

2 Security Review Summary 3

3 Findings 4
3.1 Medium Risk . 4

3.1.1 OFT cannot burn tokens during cross-chain transfers due to missing BURNER_ROLE . 4
3.2 Low Risk . 4

3.2.1 Precision loss in USDon to USDC redemption . 4
3.2.2 Hardcoded conversion rate breaks converter functionality on chains with 18-decimal

USDC . 5
3.3 Informational . 6

3.3.1 Use encode instead of encodePacked for tokenId generation 6
3.3.2 Missing zero address validation for guardian . 6
3.3.3 Missing oracle decimal validation . 7
3.3.4 Missing natSpec documentation for constructor parameter 7
3.3.5 Excessive oracle staleness threshold . 7

1

1 Introduction

1.1 About Cantina

Cantina is a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

A security review is a detailed evaluation of the security posture of the code at a particular moment based
on the information available at the time of the review. While the review endeavors to identify and disclose
all potential security issues, it cannot guarantee that every vulnerability will be detected or that the code
will be entirely secure against all possible attacks. The assessment is conducted based on the specific
commit and version of the code provided. Any subsequent modifications to the code may introduce new
vulnerabilities that were absent during the initial review. Therefore, any changes made to the code require
a new security review to ensure that the code remains secure. Please be advised that a security review is
not a replacement for continuous security measures such as penetration testing, vulnerability scanning,
and regular code reviews.

1.3 Risk assessment

Severity level Impact: High Impact: Medium Impact: Low

Likelihood: high Critical High Medium

Likelihood: medium High Medium Low

Likelihood: low Medium Low Low

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High
findings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be
fixed as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings are a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not impact
the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Ondo's mission is to make institutional-grade financial products and services available to everyone.

From Oct 5th to Oct 6th the security researcher conducted a review of USDonConverter.sol and
BridgeRegistrar.sol from rwa-internal on commit hash 18afc35a. A total of 8 issues were identified:

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 0 0 0

Medium Risk 1 1 0

Low Risk 2 1 1

Gas Optimizations 0 0 0

Informational 5 5 0

Total 8 7 1

3

https://github.com/ondoprotocol/rwa-internal/blob/18afc35ada801e41c5bf993984279384ffcd6ce2/contracts/globalMarkets/USDonManager/USDonConverter.sol
https://github.com/ondoprotocol/rwa-internal/blob/18afc35ada801e41c5bf993984279384ffcd6ce2/contracts/globalMarkets/tokenFactory/registrars/BridgeRegistrar.sol
https://github.com/ondoprotocol/rwa-internal
https://github.com/ondoprotocol/rwa-internal/tree/18afc35ada801e41c5bf993984279384ffcd6ce2

3 Findings

3.1 Medium Risk

3.1.1 OFT cannot burn tokens during cross-chain transfers due to missing BURNER_ROLE

Severity: Medium Risk

Context: BridgeRegistrar.sol#L117

Description: The BridgeRegistrar.register() function only grants MINTER_ROLE to the newly deployed
OFT contract but fails to grant the required BURNER_ROLE. This causes all outbound cross-chain token
transfers to fail until the tokenAdmin manually grants the BURNER_ROLE to the OFT contract. When a user
attempts to send tokens cross-chain via the OFT's send() function, the _debit() internal function is called:

function _debit(
address _from,
uint256 _amountLD,
uint256 _minAmountLD,
uint32 _dstEid

) internal returns (uint256 amountSentLD, uint256 amountReceivedLD) {
(amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid);
// Burns tokens from the caller.
innerToken.burn(_from, amountSentLD);

}

The innerToken.burn() call attempts to burn tokens from the GMToken contract, which has the following
access control:

function burn(address from, uint256 amount) external onlyRole(BURNER_ROLE) {
_burn(from, amount);

}

Since the OFT lacks BURNER_ROLE, the burn operation will revert with an access control error, completely
preventing users from bridging tokens out of the chain.

Recommendation: Consider implementing either of the following suggestions:

1. Replace the burn function with burnFrom function in the OndoOFT.sol contract:

function _debit(
address _from,
uint256 _amountLD,
uint256 _minAmountLD,
uint32 _dstEid

) internal returns (uint256 amountSentLD, uint256 amountReceivedLD) {
(amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid);
// Burns tokens from the caller.

- innerToken.burn(_from, amountSentLD);
+ innerToken.burnFrom(_from, amountSentLD);
}

2. Grant both MINTER_ROLE and BURNER_ROLE to the OFT contract in the register() function:

function register(address token) external override onlyRole(TOKEN_FACTORY_ROLE) whenNotPaused {
//

+ IAccessControlEnumerable(token).grantRole(keccak256("BURNER_ROLE"), oft);
//

}

Ondo Finance: Fixed in PR 13 to use burnFrom.

Sujith Somraaj: Fix verified.

3.2 Low Risk

3.2.1 Precision loss in USDon to USDC redemption

Severity: Low Risk

Context: USDonConverter.sol#L143

4

https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/BridgeRegistrar.sol#L117
https://github.com/ondoprotocol/gm-lz-bridge/pull/13
https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/USDonConverter.sol#L143

Description: The redeem() function in the USDonConverter.sol contract suffers from precision loss when
converting USDon (18 decimals) to USDC (6 decimals) due to Solidity's integer division truncation.

function redeem(
uint256 rwaAmount,
address receivingToken,
uint256 minimumTokenReceived

) external override returns (uint256 receiveTokenAmount) {
//
usdon.safeTransferFrom(gmTokenManager, wallet, rwaAmount);
receiveTokenAmount = rwaAmount / USDC_TO_USDON_CONVERSION_RATE; // --> precision loss
// ...

}

The conversion divides rwaAmount (18 decimals) by USDC_TO_USDON_CONVERSION_RATE (1e12). Any remain-
der from this division is truncated due to Solidity's integer division behavior. This means any USDon
amount with non-zero digits in the last 12 decimal places will lose that fractional value.

Recommendation: Consider one of the following approaches:

1. Require exact divisibility:

function redeem(
uint256 rwaAmount,
address receivingToken,
uint256 minimumTokenReceived

) external override returns (uint256 receiveTokenAmount) {
+ if (rwaAmount % USDC_TO_USDON_CONVERSION_RATE != 0) revert InvalidRedeemAmount();

//
}

2. Return dust to user:

function redeem(
uint256 rwaAmount,
address receivingToken,
uint256 minimumTokenReceived

) external override returns (uint256 receiveTokenAmount) {
//

+ uint256 dust = rwaAmount % USDC_TO_USDON_CONVERSION_RATE;
+ rwaAmount = rwaAmount - dust;

/// here the dust remains in the GMTokenManager contract; refunds should be handled there.
//

}

Ondo Finance: Acknowledged. We are aware of the truncation that will occur when decimals of the
stablecoin < decimals of USDon; however, the truncation favors the protocol, so there is no additional risk
here. Regardless, though, the dust that the user could be refunded would not be enough to offset the
additional gas cost incurred from the additional refund logic.

Sujith Somraaj: Acknowledged.

3.2.2 Hardcoded conversion rate breaks converter functionality on chains with 18-decimal USDC

Severity: Low Risk

Context: USDonConverter.sol#L35

Description: The USDonConverter.sol contract uses a hardcoded USDC_TO_USDON_CONVERSION_RATE of
1e12, which assumes USDC always has 6 decimals. However, on certain chains, such as BNB Chain (BSC),
USDC has 18 decimals instead of 6.

This discrepancy will cause severe calculation errors and affect the smart contract functionality on those
chains (or) force redeployment.

Recommendation: Consider querying decimals dynamically during deployment to set the USDC_TO_-
USDON_CONVERSION_RATE variable, instead of hardcoding it.

Ondo Finance: Fixed in PR 487.

Sujith Somraaj: Fix verified.

5

https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/USDonConverter.sol#L35
https://github.com/ondoprotocol/rwa-internal/pull/487

3.3 Informational

3.3.1 Use encode instead of encodePacked for tokenId generation

Severity: Informational

Context: BridgeRegistrar.sol#L106

Description: In the register() function in BridgeRegistrar.sol contract, uses abi.encodePacked() to
generate a deterministic tokenId by hashing the token's symbol and name:

bytes32 tokenId = keccak256(
abi.encodePacked(

IERC20Metadata(token).symbol(),
IERC20Metadata(token).name()

)
);

abi.encodePacked() concatenates dynamic types (strings) without including length information or padding,
which can lead to hash collisions. Different combinations of symbol and name can produce identical
hashes.

Token A Token B Result

Symbol: ”ABC”, Name: ”DEF” Symbol: ”AB”, Name: ”CDEF” Same tokenId
Symbol: ”USDC”, Name: ”oin” Symbol: ”USDCo”, Name: ”in” Same tokenId

Using the same tokenId again will cause reverts in the Messenger.sol contract because each tokenId
can only be registered once. This primarily prevents valid tokens with similar tokenIds (resulting from
collisions) from being registered.

Recommendation: Replace abi.encodePacked() with abi.encode() to eliminate collision risks:

bytes32 tokenId = keccak256(
- abi.encodePacked(
+ abi.encode(

IERC20Metadata(token).symbol(),
IERC20Metadata(token).name()

)
);

Ondo Finance: Fixed in PR 488.

Sujith Somraaj: Fix verified.

3.3.2 Missing zero address validation for guardian

Severity: Informational

Context: BridgeRegistrar.sol#L69

Description: The constructor of BridgeRegistrar.sol takes a guardian parameter but does not verify
that it isn't the zero address (i.e.,'address(0)') Deploying with address(0) may render the contract unusable,
potentially requiring redeployment.

Recommendation: Consider adding a zero address check as follows:

constructor(address guardian, address _ondoBridgeOwner) {
+ if (guardian == address(0)) revert OndoGuardianCantBeZero();

/// rest of the code
}

Ondo Finance: Fixed in PR 489.

Sujith Somraaj: Fix verified.

6

https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/BridgeRegistrar.sol#L106
https://github.com/ondoprotocol/rwa-internal/pull/488
https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/BridgeRegistrar.sol#L69
https://github.com/ondoprotocol/rwa-internal/pull/489

3.3.3 Missing oracle decimal validation

Severity: Informational

Context: USDonConverter.sol#L94

Description: The USDonConverter.sol contract relies on a Chainlink oracle to validate USDC pricing before
allowing subscription and redemption operations.

The contract hardcodes the expected oracle price format to 8 decimals (MINIMUM_USDC_PRICE = 0.98e8)
but fails to validate that the provided oracle actually returns prices in this format during deployment.

Recommendation: Add a validation check in the constructor to ensure the oracle returns prices with
exactly 8 decimals:

+ error InvalidOracleDecimals();

constructor(
address _gmTokenManager,
address _wallet,
address _usdon,
address _usdc,
address _usdcOracle

) {
/// rest of the code

+ if (usdcOracle.decimals() != 8) {
+ revert InvalidOracleDecimals();
+ }
}

Ondo Finance: Fixed in PR 490.

Sujith Somraaj: Fix verified.

3.3.4 Missing natSpec documentation for constructor parameter

Severity: Informational

Context: USDonConverter.sol#L74

Description: The constructor's NatSpec documentation is incomplete and missing documentation for the
_usdcOracle parameter.

Recommendation: Add the missing @param documentation for the _usdcOracle parameter:

/**
* @notice Constructs the USDonConverter contract
* @param _gmTokenManager The GMTokenManager address authorized to call functions
* @param _wallet The wallet address that holds token reserves
* @param _usdon The USDon token address
* @param _usdc The USDC token address

+ * @param _usdcOracle The Chainlink USDC/USD price feed address
*/
constructor(
address _gmTokenManager,
address _wallet,
address _usdon,
address _usdc,
address _usdcOracle

) {
// ...

}

Ondo Finance: Fixed in PR 487.

Sujith Somraaj: Fix verified.

3.3.5 Excessive oracle staleness threshold

Severity: Informational

Context: USDonConverter.sol#L39

7

https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/USDonConverter.sol#L94
https://github.com/ondoprotocol/rwa-internal/pull/490
https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/USDonConverter.sol#L74
https://github.com/ondoprotocol/rwa-internal/pull/487
https://cantina.xyz/code/84820aa7-4b1b-4292-acce-c20fdf0bdbec/contracts/USDonConverter.sol#L39

Description: The USDonConverter.sol contract sets MAX_ORACLE_DATA_AGE to 30 hours to validate the
freshness of Chainlink oracle data:

uint256 public constant MAX_ORACLE_DATA_AGE = 30 hours;

function _assertTokenMinimumUSDCPrice() internal view {
(, int price, , uint256 updatedAt,) = usdcOracle.latestRoundData();
if (updatedAt < block.timestamp - MAX_ORACLE_DATA_AGE)
revert OraclePriceOutdated();

// ...
}

This 30-hour window is huge and defeats the purpose of Oracle staleness checks.

Recommendation: Reduce the MAX_ORACLE_DATA_AGE to a more reasonable value (< 24 hours).

Ondo Finance: Fixed in PR 491. This heartbeat can actually differ depending on the chain, so we decided
to just parametrize this.

Sujith Somraaj: Fix verified.

8

https://github.com/ondoprotocol/rwa-internal/pull/491

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	OFT cannot burn tokens during cross-chain transfers due to missing BURNER_ROLE

	Low Risk
	Precision loss in USDon to USDC redemption
	Hardcoded conversion rate breaks converter functionality on chains with 18-decimal USDC

	Informational
	Use encode instead of encodePacked for tokenId generation
	Missing zero address validation for guardian
	Missing oracle decimal validation
	Missing natSpec documentation for constructor parameter
	Excessive oracle staleness threshold

