
Audited By:
Sheraz Arshad @ CertiK
sheraz.arshad@certik.org
Reviewed By:
Camden Smallwood @ CertiK
camden.smallwood@certik.org

Ondo
Ondo Protocol

Security Assessment

April 19th, 2021

mailto:sheraz.arshad@certik.org
mailto:camden.smallwood@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or
"asset" created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK's goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention to increase the
quality of the company/product's IT infrastructure and or source code.

Project Name Ondo - Ondo Protocol

Description The Ondo Protocol implements LP tokens staking and rewarding mechanism
based on tranches of underlying tokens of the liquidity pools. The underlying
pool tokens are divided into senior and junior tranches with senior tranche
having preference in the receiving of the LP rewards. The strategy for
Uniiswap is implemented to deal with adding and removing of LP tokens from
the pool contracts.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. be5f650a4984d8b8f1dca8f7a1c3827981cbac4e
2. aebd7c31d445cdb94b9edd5cc64a1ef743430d8b

Delivery Date April 19th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline April 12th, 2021 - April 19th, 2021

 Total Issues 27

 Total Critical 0

 Total Major 0

 Total Medium 4

 Total Minor 3

 Total Informational 20

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/ondoprotocol/protocol-audit
https://github.com/ondoprotocol/protocol-audit/commit/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e
https://github.com/ondoprotocol/protocol-audit/commit/aebd7c31d445cdb94b9edd5cc64a1ef743430d8b

 Executive Summary

This report represents the results of CertiK’s engagement with Ondo on their implementation of the Ondo Protocol
smart contracts.

The manual and static analysis were performed in the audit. Our findings mainly refer to optimizations issues, a few
minor issues and major issues. The medium issues comprise the non-checking of addresses that initialize the
contracts states against zero address value and exposure of Uniswap interactions to small a probability of sandwich
attacks. The minor issues comprise missing of noPanic check on the inherited implementations of
increaseApproval and decreaseApproval functions in TrancheToken contract, and incorrect reflection of excess

tokens in the UniswapStrategy contract. The remediations are applied to all of the findings except USY-02 .

ID Contract Location

APC AllPairCCO.sol

ORC OndoRegistryClient.sol contracts/OndoRegistryClient.sol

ORI OndoRegistryClientInitializable.sol contracts/OndoRegistryClientInitializable.sol

REG Registry.sol contracts/Registry.sol

TTN TrancheToken.sol contracts/TrancheToken.sol

IBC IBasicCCO.sol interfaces/IBasicCCO.sol

IPC IPairCCO.sol interfaces/IPairCCO.sol

IRY IRegistry.sol interfaces/IRegistry.sol

ISY IStrategy.sol interfaces/IStrategy.sol

ITT ITrancheToken.sol interfaces/ITrancheToken.sol

OLY OndoLibrary.sol libraries/OndoLibrary.sol

BPL BasePairLPStrategy.sol contracts/strategies/BasePairLPStrategy.sol

USY UniswapStrategy.sol contracts/strategies/UniswapStrategy.sol

 Files In Scope

contracts/AllPairCCO.sol

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/OndoRegistryClient.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/OndoRegistryClientInitializable.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/Registry.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/TrancheToken.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/interfaces/IBasicCCO.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/interfaces/IPairCCO.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/interfaces/IRegistry.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/interfaces/IStrategy.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/interfaces/ITrancheToken.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/libraries/OndoLibrary.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/BasePairLPStrategy.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol

AllPairCCO.sol

OndoRegistryClient.sol

TrancheToken.sol

IStrategy.sol

ABDKMathQuad.sol

IPairCCO.sol

ITrancheToken.sol

IBasicCCO.sol

OndoLibrary.sol

OndoRegistryClientInitializable.sol

Registry.sol IRegistry.sol

UniswapStrategy.sol

BasePairLPStrategy.sol

UniswapV2Library.sol

 File Dependency Graph

15%

11%

74%

Finding Summary

Medium
Minor
Informational

ID Title Type Severity Resolved

APC-01 Lack of verification for the constructor
parameter

Logical Issue Medium

APC-02 Strategy reflects incorrect amount of
excess tokens

Volatile Code Minor

APC-03 Documentation discrepancy Inconsistency Minor

APC-04 Unlocked Compiler Version Language Specific
Informational

APC-05 Inexistent Error Message Coding Style
Informational

APC-06 Explicitly returning local variable Gas Optimization
Informational

APC-07 Explicitly returning local variable Gas Optimization
Informational

ORC-01 Unlocked Compiler Version Language Specific
Informational

ORI-01 Lack of verification for the function
parameter

Logical Issue Medium

ORI-02 Unlocked Compiler Version Language Specific
Informational

REG-01 Unlocked Compiler Version Language Specific
Informational

REG-02 Inexistent Error Message Coding Style
Informational

TTN-01 Functions `increaseAllowance` and
`decreaseAllowance` are executable when
the contract is panicked

Logical Issue Minor

TTN-02 Unlocked Compiler Version Language Specific
Informational

TTN-03 Inexistent Error Message Coding Style

 Manual Review Findings

Informational

OLY-01 Unlocked Compiler Version Language Specific
Informational

OLY-02 Unused code Coding Style
Informational

OLY-03 Redundant Statements Dead Code
Informational

BPL-01 Unlocked Compiler Version Language Specific
Informational

BPL-02 Redundant declaration of `modifier` Gas Optimization
Informational

USY-01 Lack of verification for the constructor
parameters

Logical Issue Medium

USY-02 Possibility of sandwich attack Volatile Code Medium

USY-03 Unlocked Compiler Version Language Specific
Informational

USY-04 Redundant assignment of state variable Coding Style
Informational

USY-05 Unneeded use of addition assignment Coding Style
Informational

USY-06 Unneeded read of contract's storage Gas Optimization
Informational

USY-07 Explicitly returning local variable Gas Optimization
Informational

Type Severity Location

Logical Issue Medium AllPairCCO.sol L171

 APC-01: Lack of verification for the constructor parameter

Description:

The constructor parameter of _trancheTokenImpl on the aforementioned line sets a state variable of the contract
and is not validated against zero address value. If a zero address value is provided for it then it will result in
unwanted state of the contract and it cannot be changed.

Recommendation:

We advise to validate the constructor parameter _trancheTokenImpl against zero address value to guard against
setting zero address value for the contract's state variable.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L171

Type Severity Location

Volatile Code Minor AllPairCCO.sol L495

 APC-02: Strategy reflects incorrect amount of excess tokens

Description:

The aforementioned line returns excess tokens for a given investor and this excess amount is transferred to the user
within the body of the function which results in strategy contract reflecting incorrect amount of excess tokens for a
given token. Although, the current implementation does not result in any concerning vulnerability but any source
reading excess tokens amounts from the strategy contract gets incorrect excess token amount.

Recommendation:

We recommend to make use of withdrawExcess function on the strategy contract, so the strategy contract reflects
correct amounts for the excess tokens.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L495

Type Severity Location

Inconsistency Minor AllPairCCO.sol L181

 APC-03: Documentation discrepancy

Description:

The comment on the aforementioned line states that the parameter _strategist is an EOA (Externally Owned
Account) yet there is no check in the code to ensure it's an EOA address.

Recommendation:

We advise to either change the comment or implement the logic code to ensure the address is not a contract and is
an EOA address.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b by changing the
comment to reflect the current behaviour of the code.

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L181

Type Severity Location

Language Specific Informational AllPairCCO.sol L1

 APC-04: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L1

Type Severity Location

Coding Style Informational AllPairCCO.sol L419

 APC-05: Inexistent Error Message

Description:

The linked require check does not contain any error message specified.

Recommendation:

We advise the error message of the check to be set properly to illustrate what the conditionals within evaluate.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L419

Type Severity Location

Gas Optimization Informational AllPairCCO.sol L479, L600, L628

 APC-06: Explicitly returning local variable

Description:

The functions on the aforementioned lines explicitly return local variables which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L479
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L600
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L628

Type Severity Location

Gas Optimization Informational AllPairCCO.sol L406

 APC-07: Explicitly returning local variable

Description:

The functions on the aforementioned lines explicitly return local variables which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/AllPairCCO.sol#L406

Type Severity Location

Language Specific Informational OndoRegistryClient.sol L1

 ORC-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/OndoRegistryClient.sol#L1

Type Severity Location

Logical Issue Medium OndoRegistryClientInitializable.sol L48

 ORI-01: Lack of verification for the function parameter

Description:

The function parameters _registry sets the state variable of the contract and is not validated against zero address
value. If a zero address value is provided for it then it will result in unwanted state of the contract and it cannot be
changed.

Recommendation:

We recommend to validate the function parameter _registry against zero address value to guard against setting
zero address value for the contract's state variable.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/OndoRegistryClientInitializable.sol#L48

Type Severity Location

Language Specific Informational OndoRegistryClientInitializable.sol L1

 ORI-02: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/OndoRegistryClientInitializable.sol#L1

Type Severity Location

Language Specific Informational Registry.sol L1

 REG-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/Registry.sol#L1

Type Severity Location

Coding Style Informational Registry.sol L30

 REG-02: Inexistent Error Message

Description:

The linked require check does not contain any error message specified.

Recommendation:

We advise the error message of the check to be set properly to illustrate what the conditionals within evaluate.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/Registry.sol#L30

Type Severity Location

Logical Issue Minor TrancheToken.sol L76

 TTN-01: Functions increaseAllowanceincreaseAllowance and decreaseAllowancedecreaseAllowance are executable when the

contract is panicked

Description:

The function approve on the aforementioned line reverts when the contract is in the state of panic yet the
functions increaseAllowance and decreaseAllowance can still be used to change allowance even when the
contract is in the state of panic .

Recommendation:

We recommend to write derived implementations of the functions increaseAllowance and decreaseAllowance in
the TrancheToken contract where the functions revert when the contract is in the state of panic .

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/TrancheToken.sol#L76

Type Severity Location

Language Specific Informational TrancheToken.sol L1

 TTN-02: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/TrancheToken.sol#L1

Type Severity Location

Coding Style Informational TrancheToken.sol L21

 TTN-03: Inexistent Error Message

Description:

The linked require check does not contain any error message specified.

Recommendation:

We advise the error message of the check to be set properly to illustrate what the conditionals within evaluate.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/TrancheToken.sol#L21

Type Severity Location

Language Specific Informational OndoLibrary.sol L1

 OLY-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/libraries/OndoLibrary.sol#L1

Type Severity Location

Coding Style Informational OndoLibrary.sol L10

 OLY-02: Unused code

Description:

The statement on the aforementioned allows the functions of OLib library on the type OLib.Investor yet the
codebase does not have any instance where the library functions are called on the aforementioned type.

Recommendation:

We advise to remove the redundant statement on the aforementioned line as it is not used.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/libraries/OndoLibrary.sol#L10

Type Severity Location

Dead Code Informational OndoLibrary.sol L32

 OLY-03: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/libraries/OndoLibrary.sol#L32

Type Severity Location

Language Specific Informational BasePairLPStrategy.sol L1

 BPL-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/BasePairLPStrategy.sol#L1

Type Severity Location

Gas Optimization Informational BasePairLPStrategy.sol L24

 BPL-02: Redundant declaration of modifiermodifier

Description:

The modifier onlyStrategist on the aforementioned line is redundant as the same modifier is already inherited
from OndoRegistryClientInitializable contract by the name isStrategist .

Recommendation:

We advise to utilize the already existing modifier in the contract instead of declaring a new one to reduce the
bytecode footprint of the contract.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/BasePairLPStrategy.sol#L24

Type Severity Location

Logical Issue Medium UniswapStrategy.sol L28

 USY-01: Lack of verification for the constructor parameters

Description:

The constructor parameters of _router and _factory are used to set the state variables of the contract and
these parameters are not validated against zero address values. If these parameters are provided as zero address
values then it will result in unwanted state of the contract and they cannot be changed.

Recommendation:

We recommend validate the aforementioned parameters against zero address values to guard against setting the
contract's state variables with zero address values.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L28

Type Severity Location

Volatile Code Medium UniswapStrategy.sol L189, L261

 USY-02: Possibility of sandwich attack

Description:

The aforementioned lines perform token swap on uniswap . Although, the functions are only callable by the
strategist, It still possesses a possibility of sandwich attack from a malicious actor who can front-run the transaction
and as amountOutMin is specified as 0, it will result in less than expected amount received by the contract.

Recommendation:

We recommend to provide the amountOutMin parameters to guard against sandwich attacks.

Alleviation:

The finding is acknowledged by the Ondo team but no alleviations are applied.

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L189
https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L261

Type Severity Location

Language Specific Informational UniswapStrategy.sol L1

 USY-03: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.8.3 the contract should contain the following line:

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

pragma solidity 0.8.3;

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L1

Type Severity Location

Coding Style Informational UniswapStrategy.sol L33

 USY-04: Redundant assignment of state variable

Description:

The state variable registry is redundantly assigned on the aforementioned line as it is already on L52 in
OndoRegistryClientInitializable contract.

Recommendation:

We recommend to remove the redundant assignment of variable on the aforementioned line.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L33

Type Severity Location

Coding Style Informational UniswapStrategy.sol L158

 USY-05: Unneeded use of addition assignment

Description:

The aforementioned performs unnecessary addition assignment which can be substituted with a simple assignment
to increase the legibility of the codebase as cco_.lpTokens will always be 0 prior to the aforementioned statement.

Recommendation:

We advise to substitute the addition assignment with a simple assignment on the aforementioned line.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L158

Type Severity Location

Gas Optimization Informational UniswapStrategy.sol L161

 USY-06: Unneeded read of contract's storage

Description:

The aforementioned line reads cco_.lpTokens from contract's storage which is inefficient as the same value is
available from the local variable lpTokens .

Recommendation:

We advise to utilize local variable on the aforementioned line as reading from local variable costs significantly less
gas than reading from the contract's storage.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L161

Type Severity Location

Gas Optimization Informational UniswapStrategy.sol L218

 USY-07: Explicitly returning local variable

Description:

The function on the aforementioned line explicitly return local variables which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations are applied as of commit hash aebd7c31d445cdb94b9edd5cc64a1ef743430d8b .

https://github.com/ondoprotocol/protocol-audit/blob/be5f650a4984d8b8f1dca8f7a1c3827981cbac4e/contracts/strategies/UniswapStrategy.sol#L218

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

	 Disclaimer
	What is a CertiK report?
	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 File Dependency Graph
	 Manual Review Findings
	 APC-01: Lack of verification for the constructor parameter
	Description:
	Recommendation:
	Alleviation:

	 APC-02: Strategy reflects incorrect amount of excess tokens
	Description:
	Recommendation:
	Alleviation:

	 APC-03: Documentation discrepancy
	Description:
	Recommendation:
	Alleviation:

	 APC-04: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 APC-05: Inexistent Error Message
	Description:
	Recommendation:
	Alleviation:

	 APC-06: Explicitly returning local variable
	Description:
	Recommendation:
	Alleviation:

	 APC-07: Explicitly returning local variable
	Description:
	Recommendation:
	Alleviation:

	 ORC-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 ORI-01: Lack of verification for the function parameter
	Description:
	Recommendation:
	Alleviation:

	 ORI-02: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 REG-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 REG-02: Inexistent Error Message
	Description:
	Recommendation:
	Alleviation:

	 TTN-01: Functions increaseAllowance and decreaseAllowance are executable when the contract is panicked
	Description:
	Recommendation:
	Alleviation:

	 TTN-02: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 TTN-03: Inexistent Error Message
	Description:
	Recommendation:
	Alleviation:

	 OLY-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 OLY-02: Unused code
	Description:
	Recommendation:
	Alleviation:

	 OLY-03: Redundant Statements
	Description:
	Recommendation:
	Alleviation:

	 BPL-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 BPL-02: Redundant declaration of modifier
	Description:
	Recommendation:
	Alleviation:

	 USY-01: Lack of verification for the constructor parameters
	Description:
	Recommendation:
	Alleviation:

	 USY-02: Possibility of sandwich attack
	Description:
	Recommendation:
	Alleviation:

	 USY-03: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 USY-04: Redundant assignment of state variable
	Description:
	Recommendation:
	Alleviation:

	 USY-05: Unneeded use of addition assignment
	Description:
	Recommendation:
	Alleviation:

	 USY-06: Unneeded read of contract's storage
	Description:
	Recommendation:
	Alleviation:

	 USY-07: Explicitly returning local variable
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Logical Issue
	Volatile Code
	Language Specific
	Coding Style
	Inconsistency
	Dead Code

