
// Private Cosmos Security Assessment 07.01.2024 - 07.05.2024

Ondo - Tokenized
Treasury Bill -
Additional Aura Module
Noble

O n d o - To ke n i z e d T r ea s u r y B i l l - Ad d i t i o n a l Au ra
M o d u l e - N o b l e

Prepared by: HALBORN

Last Updated 07/16/2024

Date of Engagement by: July 1st, 2024 - July 5th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
1

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Implement multiple channel support for addblockedchannel

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

The Noble team engaged Halborn to conduct a security assessment on their forwarding module updates,
beginning on Halborn to conduct a security assessment on the aura module updates, beginning on
07/01/2024 and ending on 07/04/2024. The security assessment was scoped to the sections of code
that pertain to the aura module. Commit hashes and further details can be found in the Scope section of
this report.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 4 days for the engagement and assigned 1 full-time security engineer to review the
security of the smart contracts in scope. The engineer is a blockchain and smart contract security
experts with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

- Ensure that the Noble Aura Module Updates operates as intended.

- Identify potential security issues with the Noble Aura Module Updates in the Noble Chain.

In summary, Halborn identified some security concerns that were accepted by the Noble team.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of the custom modules. While manual testing
is recommended to uncover flaws in logic, process, and implementation; automated testing techniques
help enhance coverage of structures and can quickly identify items that do not follow security best
practices. The following phases and associated tools were used throughout the term of the assessment:

- Research into architecture and purpose.

- Static Analysis of security for scoped repository, and imported functions. (e.g., staticcheck, gosec,
unconvert, codeql, ineffassign and semgrep)

- Manual Assessment for discovering security vulnerabilities in the codebase.

- Ensuring the correctness of the codebase.

- Dynamic Analysis of files and modules related to the Aura Module.

O u t - O f - S c o p e

External libraries and financial-related attacks.
New features/implementations after/with the remediation/given commit IDs.

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: usdy-noble

(b) Assessed Commit ID: 58ecd2a

(c) Items in scope:

x/aura

Out-of-Scope:

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

IMPLEMENT MULTIPLE CHANNEL SUPPORT FOR
ADDBLOCKEDCHANNEL

INFORMATIONAL ACKNOWLEDGED

https://github.com/ondoprotocol/usdy-noble/commit/58ecd2a2591c54781ca73f24484f040bfd77fffa

7. F I N D I N G S & T EC H D E TA I L S

7.1 I M P L E M E N T M U LT I P L E C H A N N E L S U P P O RT FO R
A D D B LO C K E D C H A N N E L
// INFORMATIONAL

Description
Currently, the AddBlockedChannel function only supports blocking a single channel at a time. To improve
efficiency and user experience, we should modify this function to accept and process an array of
channels.
Proposed Changes:
1. Update the MsgAddBlockedChannel type to include an array of channels instead of a single channel.
2. Modify the AddBlockedChannel function to iterate through the array of channels.
3. Implement batch processing of channels, adding each to the blocked list.
4. Update error handling to provide feedback on which channels were successfully blocked and which
encountered errors.
5. Modify the emitted event to include all successfully blocked channels.

func (k msgServer) AddBlockedChannel(goCtx context.Context, msg
*types.MsgAddBlockedChannel) (*types.MsgAddBlockedChannelResponse, error) {
 ctx := sdk.UnwrapSDKContext(goCtx)

 owner := k.GetOwner(ctx)
 if owner == "" {
 return nil, types.ErrNoOwner
 }
 if msg.Signer != owner {
 return nil, sdkerrors.Wrapf(types.ErrInvalidOwner, "expected %s, got %s",
owner, msg.Signer)
 }

 if k.HasBlockedChannel(ctx, msg.Channel) {
 return nil, fmt.Errorf("%s is already blocked", msg.Channel)
 }

 k.SetBlockedChannel(ctx, msg.Channel)

 return &types.MsgAddBlockedChannelResponse{},
ctx.EventManager().EmitTypedEvent(&types.BlockedChannelAdded{
 Channel: msg.Channel,
 })
}

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation
Consider adding multi-channel messages on the keeper.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

8 . AU TO M AT E D T EST I N G
Halborn used automated testing techniques to enhance coverage of certain areas of the scoped
component. Among the tools used were staticcheck, gosec, semgrep, unconvert, codeql and nancy.
After Halborn verified all the code and scoped structures in the repository and was able to compile them
correctly, these tools were leveraged on scoped structures. With these tools, Halborn can statically verify
security related issues across the entire codebase.
Staticcheck
No result.
Gosec
No result.
Errcheck
No result.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

