
// Private Cosmos Security Assessment 06.03.2024 - 06.21.2024

Ondo - Tokenized
Treasury Bill
Noble

O n d o - To ke n i z e d T r ea s u r y B i l l - N o b l e

Prepared by: HALBORN

Last Updated 07/16/2024

Date of Engagement by: June 3rd, 2024 - June 21st, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1 0

CRITICAL
0

HIGH
0

MEDIUM
3

LOW
0

INFORMATIONAL
7

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 No validation check for new owner in transferownership
7.2 Lack of blacklist check when adding burners, pausers, and owners
7.3 Pause functionality does not affect mint and burn operations
7.4 Duplicate transactions in the mempool's data structures
7.5 Asa-2023-002: default blockparams.maxbytes configuration may increase block times and
affect consensus participation in the noble app chain
7.6 Asa-2024-004: default evidence configuration parameters may limit window of validity for the
noble app chain
7.7 Potential inconsistency in blocked address handling for usdy token transfers
7.8 Lack of simulation and fuzzing of the module invariant
7.9 Missing long descriptions in cli affects usability and user experience
7.10 Blocklist owner can add itself to the blocklist

1 0 0%

8. Automated Testing

1 . I n t r o d u c t i o n

The Noble team engaged Halborn to conduct a security assessment on their forwarding module updates,
beginning on Halborn to conduct a security assessment on the forwarding module, beginning on
06/03/2024 and ending on 06/22/2024. The security assessment was scoped to the sections of code
that pertain to the aura module. Commit hashes and further details can be found in the Scope section of
this report.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 3 weeks for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security
experts with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

- Ensure that the Noble Aura Modules operates as intended.

- Identify potential security issues with the Noble Aura Modules in the Noble Chain.

In summary, Halborn identified some security concerns that were accepted and addressed by the Noble
team.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of the custom modules. While manual testing
is recommended to uncover flaws in logic, process, and implementation; automated testing techniques
help enhance coverage of structures and can quickly identify items that do not follow security best
practices. The following phases and associated tools were used throughout the term of the assessment:

- Research into architecture and purpose.

- Static Analysis of security for scoped repository, and imported functions. (e.g., staticcheck, gosec,
unconvert, codeql, ineffassign and semgrep)

- Manual Assessment for discovering security vulnerabilities in the codebase.

- Ensuring the correctness of the codebase.

- Dynamic Analysis of files and modules related to the Aura Module.

O u t - O f - S c o p e

External libraries and financial-related attacks.
New features/implementations after/with the remediation/given commit IDs.

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: aura

(b) Assessed Commit ID: f51c30a

(c) Items in scope:

x/aura

Out-of-Scope:

F ILES AND REPOSITORY

(a) Repository: aura

(b) Assessed Commit ID: f553945

(c) Items in scope:

Out-of-Scope:

REMEDIAT ION COMMIT ID :

44c811a44c811a

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
3

LOW
0

INFORMATIONAL
7

https://github.com/noble-assets/aura/commit/f51c30a6051d922b49e6fe838d629aabc53fcc9c
https://github.com/noble-assets/aura/commit/f51c30a6051d922b49e6fe838d629aabc53fcc9c
https://github.com/noble-assets/aura/commit/f5539454759554882e6f5ed6887552eea2a5486a
https://github.com/noble-assets/aura/commit/44c811a1f60e7d5975cf27ae5d08aa1d72cf33b9
https://github.com/noble-assets/aura/commit/44c811a1f60e7d5975cf27ae5d08aa1d72cf33b9

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

NO VALIDATION CHECK FOR NEW OWNER IN
TRANSFEROWNERSHIP

MEDIUM SOLVED - 06/06/2024

LACK OF BLACKLIST CHECK WHEN ADDING BURNERS,
PAUSERS, AND OWNERS

MEDIUM RISK ACCEPTED

PAUSE FUNCTIONALITY DOES NOT AFFECT MINT AND
BURN OPERATIONS

MEDIUM SOLVED - 06/16/2024

DUPLICATE TRANSACTIONS IN THE MEMPOOL'S DATA
STRUCTURES

INFORMATIONAL ACKNOWLEDGED

ASA-2023-002: DEFAULT BLOCKPARAMS.MAXBYTES
CONFIGURATION MAY INCREASE BLOCK TIMES AND
AFFECT CONSENSUS PARTICIPATION IN THE NOBLE

APP CHAIN

INFORMATIONAL ACKNOWLEDGED

ASA-2024-004: DEFAULT EVIDENCE CONFIGURATION
PARAMETERS MAY LIMIT WINDOW OF VALIDITY FOR

THE NOBLE APP CHAIN
INFORMATIONAL ACKNOWLEDGED

POTENTIAL INCONSISTENCY IN BLOCKED ADDRESS
HANDLING FOR USDY TOKEN TRANSFERS

INFORMATIONAL ACKNOWLEDGED

LACK OF SIMULATION AND FUZZING OF THE MODULE
INVARIANT

INFORMATIONAL ACKNOWLEDGED

MISSING LONG DESCRIPTIONS IN CLI AFFECTS
USABILITY AND USER EXPERIENCE

INFORMATIONAL ACKNOWLEDGED

BLOCKLIST OWNER CAN ADD ITSELF TO THE
BLOCKLIST

INFORMATIONAL ACKNOWLEDGED

7. F I N D I N G S & T EC H D E TA I L S

7.1 N O VA L I DAT I O N C H EC K FO R N E W OWN E R I N
T R A N S F E ROWN E RS H I P
// MEDIUM

Description
In the TransferOwnership function of the blocklistMsgServer, there is a missing validation check to
ensure that the new owner is different from the previous owner. Currently, the function allows
transferring ownership to the same address as the current owner.

The specific issue lies in the following code snippet:

func (k blocklistMsgServer) TransferOwnership(goCtx context.Context, msg
*blocklist.MsgTransferOwnership) (*blocklist.MsgTransferOwnershipResponse, error) {
 ctx := sdk.UnwrapSDKContext(goCtx)
 owner := k.GetBlocklistOwner(ctx)
 if owner == "" {
 return nil, blocklist.ErrNoOwner
 }
 if msg.Signer != owner {
 return nil, errors.Wrapf(blocklist.ErrInvalidOwner, "expected %s, got %s",
owner, msg.Signer)
 }
 k.SetBlocklistPendingOwner(ctx, msg.NewOwner)
 return &blocklist.MsgTransferOwnershipResponse{},
ctx.EventManager().EmitTypedEvent(&blocklist.OwnershipTransferStarted{
 PreviousOwner: owner,
 NewOwner: msg.NewOwner,
 })
}

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C (6.3)

Recommendation
To address this issue, it is recommended to add a validation check in the TransferOwnership function to
ensure that the new owner is different from the previous owner.

R e m e d i a t i o n P l a n

SOLVED: The Noble team solved the issue by new owner check.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

Remediation Hash
https://github.com/noble-assets/aura/commit/44c811a1f60e7d5975cf27ae5d08aa1d72cf33b9

References
noble-assets/aura/x/aura/keeper/msg_server_blocklist.go#L32

7. 2 L AC K O F B L AC K L I ST C H EC K WH E N A D D I N G B U R N E RS ,
PAU S E RS , A N D OWN E RS
// MEDIUM

Description
The provided code for the msgServer in the aura module allows adding burners, pausers, and owners
without checking if the addresses are in the blacklist. This can lead to a situation where a blacklisted
address can be assigned roles with special privileges, such as burning tokens, pausing the module, or
transferring ownership.
The specific issues are:
1. In the AddBurner function, the code checks if the signer is the current owner and if the burner address
is not already a burner. However, it does not check if the burner address is in the blacklist before adding
it as a burner.
2. Similarly, in the AddPauser function, the code checks if the signer is the current owner and if the
pauser address is not already a pauser. However, it does not verify if the pauser address is in the
blacklist before assigning the pauser role.
3. In the TransferOwnership function, the code allows the current owner to transfer ownership to a new
address without checking if the new owner address is in the blacklist.

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C (6.3)

Recommendation
Consider adding a blocklist check on the privileged account additions.

R e m e d i a t i o n P l a n

RISK ACCEPTED: The Noble team accepted the risk of the issue.

https://github.com/noble-assets/aura/commit/44c811a1f60e7d5975cf27ae5d08aa1d72cf33b9
https://github.com/noble-assets/aura/blob/main/x/aura/keeper/msg_server_blocklist.go#L32
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7. 3 PAU S E F U N C T I O N A L I T Y D O ES N OT A F F EC T M I N T A N D
B U R N O P E R AT I O N S
// MEDIUM

Description
The current implementation of the pause functionality in the module does not prevent the execution of
mint and burn operations. This poses a potential issue, as the purpose of pausing the module is to
temporarily halt all critical operations.
When the module is paused using the MsgPause message, it is expected that all major operations,
including minting and burning, should be suspended until the module is unpaused. However, upon
reviewing the code, it is evident that the Mint and Burn functions do not check the paused state of the
module before executing their respective operations.
This oversight allows users with the appropriate permissions (minters and burners) to continue minting
and burning tokens even when the module is meant to be paused. This undermines the effectiveness and
purpose of the pause functionality and may lead to unexpected behavior or potential vulnerabilities.

func (k msgServer) Mint(goCtx context.Context, msg *types.MsgMint)
(*types.MsgMintResponse, error) {

ctx := sdk.UnwrapSDKContext(goCtx)

if !k.HasMinter(ctx, msg.Signer) {
return nil, types.ErrInvalidMinter

}
allowance := k.GetMinter(ctx, msg.Signer)
if allowance.LT(msg.Amount) {

return nil, sdkerrors.Wrapf(types.ErrInsufficientAllowance, "minter %s has an
allowance of %s", msg.Signer, allowance.String())

}

to, err := sdk.AccAddressFromBech32(msg.To)
if err != nil {

return nil, sdkerrors.Wrapf(err, "unable to decode account address %s",
msg.To)

}

if !msg.Amount.IsPositive() {
return nil, errors.New("amount must be positive")

}

coins := sdk.NewCoins(sdk.NewCoin(k.Denom, msg.Amount))
err = k.bankKeeper.MintCoins(ctx, types.ModuleName, coins)
if err != nil {

return nil, sdkerrors.Wrapf(err, "unable to mint to module")

}
err = k.bankKeeper.SendCoinsFromModuleToAccount(ctx, types.ModuleName, to, coins)
if err != nil {

return nil, sdkerrors.Wrapf(err, "unable to transfer from module to user")
}

k.SetMinter(ctx, msg.Signer, allowance.Sub(msg.Amount))

// NOTE: The bank module emits an event for us.
return &types.MsgMintResponse{}, nil

}

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:P/S:C (6.3)

Recommendation
To address this issue and ensure the integrity of the pause functionality, the following recommendations
are proposed:
1. Modify the Mint and Burn functions to check the paused state of the module before executing their
operations. If the module is paused, these functions should return an appropriate error indicating that
the operation is not allowed during the paused state.

R e m e d i a t i o n P l a n

SOLVED: The Noble team has already solved the issue with the adding restricting on the keeper.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7. 4 D U P L I CAT E T R A N SAC T I O N S I N T H E M E M P O O L' S DATA
ST RU C T U R ES
// INFORMATIONAL

Description
A synchronization issue has been identified in the mempool component of the Noble App Chain, which
utilizes CometBFT as its consensus engine. The mempool maintains a list and a map to keep track of
outstanding transactions. These two data structures are expected to be in sync at all times, with the
map tracking the index of each transaction in the list. However, it has been discovered that under certain
circumstances, these data structures can become out of sync, leading to the presence of duplicate
transactions in the list.
When this issue occurs, the list may contain multiple copies of the same transaction, while the map only
tracks a single index. As a result, it becomes impossible to remove all copies of the duplicated
transaction from the list, even if the transaction is later committed in a block. The only way to remove
the stuck transaction is by restarting the node.

Affected Component:
CometBFT
Affected Versions:
The specific version of CometBFT used by the Noble App Chain, as mentioned in the go.mod file:
`̀̀
github.com/tendermint/tendermint => github.com/cometbft/cometbft v0.34.27
`̀̀

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To mitigate the impact of this issue, the following workarounds and fixes are recommended:
1. Upgrade CometBFT to the patched versions:

For the v0.34.x series, upgrade to v0.34.29 or later.
For the v0.37.x series, upgrade to v0.37.2 or later.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
cometbft/cometbft

http://github.com/tendermint/tendermint
http://github.com/cometbft/cometbft
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://github.com/cometbft/cometbft/security/advisories/GHSA-w24w-wp77-qffm

7. 5 ASA-2 0 2 3 - 0 0 2 : D E FAU LT B LO C K PA R A M S . M AX BY T ES
C O N F I G U R AT I O N M AY I N C R E AS E B LO C K T I M ES A N D A F F EC T
C O N S E N S U S PA RT I C I PAT I O N I N T H E N O B L E A P P C H A I N
// INFORMATIONAL

Description
The Noble App Chain, which utilizes CometBFT as its consensus engine, has been identified to have a
default configuration for BlockParams.MaxBytes that may be too large for its specific use case. This
default value can potentially increase block times and affect consensus participation when fully utilized
by chain participants. It is recommended that the Noble App Chain team consider their specific needs
and evaluate the impact of having proposed blocks with the maximum allowed block size, especially on
bandwidth usage and block latency.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To mitigate the potential impact of this default configuration, it is recommended that the Noble App
Chain team take the following step:
1. Evaluate the specific needs and requirements of the Noble App Chain use case and determine an
appropriate value for BlockParams.MaxBytes.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
cometbft/cometbft

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://github.com/cometbft/cometbft/security/advisories/GHSA-hq58-p9mv-338c

7. 6 ASA-2 0 2 4 - 0 0 4 : D E FAU LT EV I D E N C E C O N F I G U R AT I O N
PA R A M E T E RS M AY L I M I T WI N D OW O F VA L I D I T Y FO R T H E
N O B L E A P P C H A I N
// INFORMATIONAL

Description
The Noble App Chain, which utilizes a vulnerable version of CometBFT as its consensus engine, has been
identified to have a default configuration issue. The default values for the
EvidenceParams.MaxAgeNumBlocks and EvidenceParams.MaxAgeDuration consensus parameters may
not provide sufficient coverage for the entire unbonding period of the chain. This could potentially lead to
the premature expiration of evidence and allow for unpunished Byzantine behavior if evidence is
discovered outside the defined window.
Affected Component:
CometBFT
Affected Versions:
The specific version of CometBFT used by the Noble App Chain, as mentioned in the go.mod file:
`̀̀
github.com/tendermint/tendermint => github.com/cometbft/cometbft v0.34.27
`̀̀

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
It is recommended that chain ecosystems and their maintainers set the consensus parameters
EvidenceParams.MaxAgeNumBlocks and EvidenceParams.MaxAgeDuration.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
cometbft/cometbft

http://github.com/tendermint/tendermint
http://github.com/cometbft/cometbft
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://github.com/cometbft/cometbft/security/advisories/GHSA-555p-m4v6-cqxv

7.7 P OT E N T I A L I N C O N S I ST E N CY I N B LO C K E D A D D R ES S
H A N D L I N G FO R U S DY TO K E N T R A N S F E RS
// INFORMATIONAL

Description

The current implementation of the SendCoinsFromModuleToAccount function in the Cosmos SDK and the
SendRestrictionFn function in the USDY token module may lead to inconsistent behavior when
handling blocked addresses during USDY token transfers.

The SendCoinsFromModuleToAccount function includes a check using the BlockedAddr function to
prevent sending coins to blocked addresses. If the recipient address is blocked, an error is returned,
and the transfer is not allowed to proceed.

 On the other hand, the SendRestrictionFn function performs additional checks specifically for USDY
token transfers. It checks if the sender address is blocked using the HasBlockedAddress function only
if the transfer is not a minting operation (i.e., not from the module address to a non-module address).
Additionally, it checks if the recipient address is blocked using the same HasBlockedAddress function.

The inconsistency arises from the fact that the SendCoinsFromModuleToAccount function uses the
BlockedAddr function to check for blocked addresses, while the SendRestrictionFn function uses the
HasBlockedAddress function. If these two functions have different implementations or
BlockedAddress is available on base coin transfers but not USDY, it could lead to inconsistent behavior
when handling blocked addresses.Consequently, a blocked address that is allowed to receive funds
according to the SendCoinsFromModuleToAccount function might still be blocked by the
SendRestrictionFn function, leading to unexpected transfer failures or inconsistent application of
blocked address rules.

// SendCoinsFromModuleToAccount transfers coins from a ModuleAccount to an
AccAddress.
// An error is returned if the module account does not exist or if
// the recipient address is black-listed or if sending the tokens fails.
func (k BaseKeeper) SendCoinsFromModuleToAccount(

ctx context.Context, senderModule string, recipientAddr sdk.AccAddress, amt
sdk.Coins,
) error {

senderAddr := k.ak.GetModuleAddress(senderModule)
if senderAddr == nil {

return errorsmod.Wrapf(sdkerrors.ErrUnknownAddress, "module account %s does
not exist", senderModule)

}

if k.BlockedAddr(recipientAddr) {

return errorsmod.Wrapf(sdkerrors.ErrUnauthorized, "%s is not allowed to
receive funds", recipientAddr)

}

return k.SendCoins(ctx, senderAddr, recipientAddr, amt)
}

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation

Review the implementation of the BlockedAddr function used in the SendCoinsFromModuleToAccount
function and the HasBlockedAddress function used in the SendRestrictionFn function. Ensure that
both functions have consistent behavior and use the same underlying blocked address list or
mechanism.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
cosmos/cosmos-sdk/x/bank/keeper/keeper.go#L272

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://github.com/cosmos/cosmos-sdk/blob/main/x/bank/keeper/keeper.go#L272

7. 8 L AC K O F S I M U L AT I O N A N D F U Z Z I N G O F T H E M O D U L E
I N VA R I A N T
// INFORMATIONAL

Description
The Noble AppChain system lacks comprehensive CosmosSDK simulations and invariants for its Aura
module. More complete use of the simulation feature would make it easier to fuzz test the entire
blockchain and help ensure that invariants hold.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation
Eventually, extend the simulation module to cover all operations that can occur in a real Noble Chain
deployment, along with all possible error states, and run it many times before each release.

Make sure of the following:- All module operations are included in the simulation module.

- The simulation uses some accounts (e.g., between 5 and 20) to increase the likelihood of an interesting
state change.
- The simulation uses the currencies/tokens that will be used in the production network.
- The simulation continues to run when a transaction fails.
- All paths of the transaction code are executed. (Enable code coverage to see how often individual lines
are executed.)

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7. 9 M I S S I N G LO N G D ES C R I P T I O N S I N C L I A F F EC TS
U SA B I L I T Y A N D U S E R E X P E R I E N C E
// INFORMATIONAL

Description
The Command Line Interface (CLI) for the module is currently lacking long descriptions, which are
available in the Cosmos SDK. Long descriptions provide users with detailed information about the
purpose and usage of CLI commands. The absence of these descriptions reduces the overall usability and
user experience of the CLI, as users may face difficulty in understanding the functionality and proper
usage of various commands.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

Recommendation
To address the issue of missing long descriptions in the CLI, it is recommended to:

Update the CLI to include long descriptions for all commands, following the guidelines and format
provided by the Cosmos SDK.

Ensure that these descriptions are comprehensive and accurately convey the purpose and usage of
each command.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
- https://github.com/noble-assets/aura/blob/main/x/aura/client/cli/tx_blocklist.go#L31
- https://github.com/noble-assets/aura/blob/main/x/aura/client/cli/tx_blocklist.go#L81
- https://github.com/noble-assets/aura/blob/main/x/aura/client/cli/tx_blocklist.go#L106

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7.1 0 B LO C K L I ST OWN E R CA N A D D I TS E L F TO T H E
B LO C K L I ST
// INFORMATIONAL

Description
In the current implementation of the AddToBlocklist function in the blocklistMsgServer, there is no
check to prevent the blocklist owner from adding itself to the blocklist. This means that the owner can
inadvertently or intentionally block their own address, which could lead to unintended consequences and
potentially lock them out of performing further blocklist operations.

func (k blocklistMsgServer) AddToBlocklist(goCtx context.Context, msg
*blocklist.MsgAddToBlocklist) (*blocklist.MsgAddToBlocklistResponse, error) {

ctx := sdk.UnwrapSDKContext(goCtx)

owner := k.GetBlocklistOwner(ctx)
if owner == "" {

return nil, blocklist.ErrNoOwner
}
if msg.Signer != owner {

return nil, errors.Wrapf(blocklist.ErrInvalidOwner, "expected %s, got %s",
owner, msg.Signer)

}

for _, account := range msg.Accounts {
address, err := sdk.AccAddressFromBech32(account)
if err != nil {

return nil, errors.Wrapf(err, "unable to decode account address %s",
account)

}

k.SetBlockedAddress(ctx, address)
}

return &blocklist.MsgAddToBlocklistResponse{},
ctx.EventManager().EmitTypedEvent(&blocklist.BlockedAddressesAdded{

Accounts: msg.Accounts,
})

}

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:P/S:C (0.0)

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

Recommendation
To prevent the blocklist owner from accidentally or intentionally adding itself to the blocklist, it is
recommended to add a validation check in the AddToBlocklist function.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Noble team acknowledged the issue.

References
noble-assets/aura/x/aura/keeper/msg_server_blocklist.go#L61

8 . AU TO M AT E D T EST I N G
Halborn used automated testing techniques to enhance coverage of certain areas of the scoped
component. Among the tools used were staticcheck, gosec, semgrep, unconvert, codeql and nancy.
After Halborn verified all the code and scoped structures in the repository and was able to compile them
correctly, these tools were leveraged on scoped structures. With these tools, Halborn can statically verify
security related issues across the entire codebase.
Staticcheck
No result.
Gosec
No result.
Errcheck
No result.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://github.com/noble-assets/aura/blob/main/x/aura/keeper/msg_server_blocklist.go#L61

