
Public

SMART CONTRACT AUDIT REPORT

for

ONDO

Prepared By: Shuxiao Wang

PeckShield
May 16, 2021

1/30 PeckShield Audit Report #: 2021-112

sxwang@peckshield.com

Public

Document Properties

Client Ondo
Title Smart Contract Audit Report
Target Ondo
Version 1.0
Author Xuxian Jiang
Auditors Yiqun Chen, Xuxian Jiang, Huaguo Shi
Reviewed by Shuxiao Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 May 16, 2021 Xuxian Jiang Final Release
1.0-rc1 May 10, 2021 Xuxian Jiang Release Candidate #1
0.3 May 3, 2021 Xuxian Jiang Add More Findings #2
0.2 April 30, 2021 Xuxian Jiang Add More Findings #1
0.1 April 26, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/30 PeckShield Audit Report #: 2021-112

Public

Contents

1 Introduction 4
1.1 About Ondo . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Logic in Excess Withdrawal . 11
3.2 Duplicate Removal in Registry::tokensDeclaredDead() 12
3.3 Explicit Input Validation in AllPairCCO::transition() 13
3.4 Improved Sanity Checks For System Parameters . 14
3.5 Incorrect Performance Fee Calculation . 16
3.6 Redundant Code Removal . 17
3.7 Accommodation of approve() Idiosyncrasies . 18
3.8 Trust Issue of Admin Keys . 20
3.9 Possible Front-Running For Reduced Return . 21
3.10 Improved Business Logic in RolloverCCO::deposit() 23
3.11 Potentially Repeated Excess Returns Of RolloverCCO 24

4 Conclusion 28

References 29

3/30 PeckShield Audit Report #: 2021-112

Public

1 | Introduction

Given the opportunity to review the Ondo design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Ondo

The goal of Ondo is to allow investors to shift the risk and reward balance between each other. In par-
ticular, Ondo classifies investors into two groups: the senior and junior tranche. The senior tranche

will receive a fixed percentage over their initial investments. The junior tranche will receive any
excess returns over the senior tranche. This fixed percentage, called the hurdle rate, is determined
when the product is created. The underlying investment is liquidity provider tokens on decentralized
exchanges, e.g. Uniswap, Sushiswap, Balancer, Curve, etc. Liquidity providers inject an equal value of
a pair of assets into a liquidity pool. In return they earn fees and incentives for providing liquidity,
which is collected by withdrawing liquidity from the pool.

The basic information of Ondo is as follows:

Table 1.1: Basic Information of Ondo

Item Description
Issuer Ondo
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 16, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used

4/30 PeckShield Audit Report #: 2021-112

Public

in this audit. Note that Ondo assumes a trusted price oracle with timely market price feeds for
supported assets and the oracle itself is not part of this audit.

• https://github.com/ondoprotocol/protocol-audit.git (29b2c9a)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/30 PeckShield Audit Report #: 2021-112

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/30 PeckShield Audit Report #: 2021-112

Public

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/30 PeckShield Audit Report #: 2021-112

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/30 PeckShield Audit Report #: 2021-112

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Ondo protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 5

Low 5

Informational 0

Total 11

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/30 PeckShield Audit Report #: 2021-112

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
5 medium-severity vulnerabilities, and 5 low-severity vulnerabilities.

Table 2.1: Key Ondo Audit Findings

ID Severity Title Category Status
PVE-001 Medium Improved Logic in Excess Withdrawal Security Features Fixed
PVE-002 Low Duplicate Removal in Reg-

istry::tokensDeclaredDead()
Business Logic Fixed

PVE-003 Low Explicit Input Validation in AllPair-
CCO::transition()

Business Logic Fixed

PVE-004 Low Improved Sanity Checks Of System/-
Function Parameters

Coding Practices Fixed

PVE-005 Medium Incorrect Performance Fee Calculation Business Logic Confirmed
PVE-006 Low Redundant Code Removal Coding Practices Fixed
PVE-007 Low Accommodation of approve() Idiosyn-

crasies
Coding Practices Fixed

PVE-008 Medium Trust Issue of Admin Keys Security Features Confirmed
PVE-009 Medium Possible Front-Running For Reduced Re-

turn
Business Logic Fixed

PVE-010 High Improved Business Logic in Rollover-
CCO::deposit()

Business Logic Fixed

PVE-011 Medium Potentially Repeated Excess Returns Of
RolloverCCO

Business Logic Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/30 PeckShield Audit Report #: 2021-112

Public

3 | Detailed Results

3.1 Improved Logic in Excess Withdrawal

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: BasePairLPStrategy

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

The Ondo protocol has a number of essential contracts for different functionalities and duties:
strategies, AllPairCCO, RolloverCCO, Registry, and TrancheToken. While examining the BasePairLPStrategy

contract, we notice one public function withdrawExcess() is not properly guarded.
To elaborate, we show below the withdrawExcess() routine that is designed to transfer any unused

deposits back to the investor. We notice that the current logic employs the isAuthorized(OLib.

CCO_ROLE) modifier to require CCO_ROLE authorization. However, the proper authorization should be
more explicit, i.e., onlyOrigin(_ccoId). By doing so, only the origin of the intended _ccoID may able
to request the return of excess tokens, not any account with the CCO_ROLE authorization.

87 /**
88 * @notice Send excess tokens to investor
89 */
90 f unc t i on wi thdrawExces s (
91 uint256 _ccoId ,
92 OLib . Tranche t ranche ,
93 address to ,
94 uint256 amount
95) ex te rna l o v e r r i d e i s A u t h o r i z e d (OLib .CCO_ROLE) {
96 CCO storage _cco = ccos [_ccoId] ;
97 i f (t r anche == OLib . Tranche . S en i o r) {
98 uint256 e x c e s s = _cco . s e n i o r E x c e s s ;
99 r equ i r e (amount <= exce s s , "Withdrawing too much") ;

100 _cco . s e n i o r E x c e s s −= amount ;
101 _cco . s e n i o r . s a f eT r a n s f e r (to , amount) ;

11/30 PeckShield Audit Report #: 2021-112

Public

102 } e l s e {
103 uint256 e x c e s s = _cco . j u n i o r E x c e s s ;
104 r equ i r e (amount <= exce s s , "Withdrawing too much") ;
105 _cco . j u n i o r E x c e s s −= amount ;
106 _cco . j u n i o r . s a f eT r a n s f e r (to , amount) ;
107 }
108 }

Listing 3.1: BasePairLPStrategy::withdrawExcess()

Recommendation Authenticate the caller of withdrawExcess() to be onlyOrigin(_ccoId), not
the current isAuthorized(OLib.CCO_ROLE).

Status This issue has been fixed in this commit: 1e9db80.

3.2 Duplicate Removal in Registry::tokensDeclaredDead()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Registry

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Ondo protocol has a protocol-wide registry Registry with a number of access control-related
configurations. Our analysis shows that the contract also maintains an internal list of TrancheToken
instances that can be recycled for gas efficiency.

To elaborate, we show below the responsible tokensDeclaredDead() routine. As the name indicates,
this routine adds the given list of tokens into an internal array deadTokens where the governance can
delete to save gas. However, it comes to our attention that the given list is not validated for any
duplicate.

88 /**
89 * @notice Manually determine which TrancheToken instances can be recycled
90 * @dev Move into another list where createCCO can delete to save gas. Done manually

for safety.
91 * @param _tokens List of tokens
92 */
93 f unc t i on tokensDec la redDead (address [] c a l l d a t a _tokens)
94 ex te rna l
95 on lyGove rnance
96 {
97 f o r (uint256 i = 0 ; i < _tokens . l ength ; i++) {
98 deadTokens . push (ITrancheToken (_tokens [i])) ;
99 }

12/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/1e9db80

Public

100 }

Listing 3.2: Registry :: tokensDeclaredDead()

Recommendation Revise the tokensDeclaredDead() logic to not save into the internal array
deadTokens with duplicates

Status This issue has been fixed in this commit: 2156b55.

3.3 Explicit Input Validation in AllPairCCO::transition()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AllPairCCO

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the Ondo protocol, there is a core AllPairCCO contract that contains most of the implementation
for Collateralized Crypto Obligations (CCO)s. Specifically, rather than creating unique contract in-
stances for each CCO, the state for all CCOs is stored in a mapping. Each CCO has a unique id number
created by hashing the metadata on the CCO: asset pair, strategy contract, start time, investment
time, and duration. Each CCO has to be one of four self-evident states: Inactive, Deposit, Live, and

Withdraw. In order to facilitate the (linear) state transition among these four states, a helper routine
transition() is provided.

To elaborate, we show below the transition() helper routine. Our analysis shows one specific
transition Live -> Withdraw can be improved by explicitly enforcing the required states. In particu-
lar, the current logic only enforces require(curState == OLib.State.Live) (line 120), which can be
improved as require(curState == OLib.State.Live && _nextState == OLib.State.Withdraw).

106 // Determine if one can move to a new state. For now the transitions
107 // are strictly linear. No state machines , really.
108 mod i f i e r t r a n s i t i o n (uint256 _ccoId , OLib . S ta t e _nextState) {
109 CCO storage cco_ = CCOs [_ccoId] ;
110 OLib . S ta t e c u rS t a t e = cco_ . s t a t e ;
111 i f (_nextState == OLib . S ta t e . L i v e) {
112 r equ i r e (
113 cu rS t a t e == OLib . S ta t e . Depos i t ,
114 // "Cannot transition to Live from current state"
115 i n v a l i dT r a n s i t i o nMs g
116) ;
117 r equ i r e (cco_ . i n v e s tA t <= block . timestamp , "Not yet time to invest") ;
118 } e l s e {

13/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/2156b55

Public

119 r equ i r e (
120 cu rS t a t e == OLib . S ta t e . L ive ,
121 // "Cannot transition to Withdraw from current state"
122 i n v a l i dT r a n s i t i o nMs g
123) ;
124 r equ i r e (cco_ . redeemAt <= block . timestamp , "Not yet time to redeem") ;
125 }
126 cco_ . s t a t e = _nextState ;
127 CCOsByState [c u r S t a t e] . remove (_ccoId) ;
128 CCOsByState [_nextState] . add (_ccoId) ;
129 _;
130 }

Listing 3.3: AllPairCCO:: transition ()

Recommendation Properly strengthen the transition() logic by making state transition ex-
plicit.

Status This issue has been fixed in this commit: 7e82cf9.

3.4 Improved Sanity Checks For System Parameters

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Ondo protocol is no exception. In the following, we examine a number of routines
that can be improved to better validate the given input.

The first routine AllPairCCO::maybeOpenDeposit() determines whether a given CCO can shift to
an open state. Besides the current validation, it is better to add the following requirement, i.e.,
require(cco_.startAt > 0 && cco_.startAt <= block.timestamp), to ensure the startAt field is indeed
valid.

132 // Determine if a CCO can shift to an open state. A CCO is started
133 // in an inactive state. It can only move forward when time has
134 // moved past the starttime.
135 mod i f i e r maybeOpenDeposit (uint256 _ccoId) {
136 CCO storage cco_ = CCOs [_ccoId] ;
137 i f (cco_ . s t a t e == OLib . S ta t e . I n a c t i v e) {
138 r equ i r e (cco_ . s t a r tA t <= block . timestamp , "Not yet time to enroll") ;

14/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/7e82cf9

Public

139 cco_ . s t a t e = OLib . S ta t e . Depos i t ;
140 CCOsByState [OLib . S ta t e . I n a c t i v e] . remove (_ccoId) ;
141 CCOsByState [OLib . S ta t e . Depos i t] . add (_ccoId) ;
142 } e l s e i f (cco_ . s t a t e != OLib . S ta t e . Depos i t) {
143 r e ve r t ("Invalid operation at current state") ;
144 }
145 _;
146 }

Listing 3.4: AllPairCCO::maybeOpenDeposit()

The second routine canDeposit() determines whether the given CCO can accept investor de-
posits. This routine can be similarly improved by verifying cco_.startAt > 0 && cco_.startAt <=

block.timestamp.

906 f unc t i on canDepos i t (uint256 _ccoId) ex te rna l view o v e r r i d e r e tu rn s (bool) {
907 CCO storage cco_ = CCOs [_ccoId] ;
908 i f (cco_ . s t a t e == OLib . S ta t e . I n a c t i v e) {
909 re tu rn cco_ . s t a r tA t <= block . timestamp ;
910 }
911 re tu rn cco_ . s t a t e == OLib . S ta t e . Depos i t ;
912 }

Listing 3.5: AllPairCCO::canDeposit()

The third routine createAndAddNextCco() defines the next CCO for this rollover to invest. It is
suggested to perform a more through validation on the given _ccoParams to define a CCO.

353 f unc t i on createAndAddNextCco (
354 uint256 _ro l l o v e r I d ,
355 OLib . CCOParams memory _ccoParams
356)
357 ex te rna l
358 noPanic
359 notDead (_ r o l l o v e r I d)
360 on l yC r e a t o r (_ r o l l o v e r I d)
361 nonReent rant
362 {
363 Ro l l o v e r storage r o l l o v e r_ = r o l l o v e r s [_ r o l l o v e r I d] ;
364 _ccoParams . s t a r tT ime =
365 ccoManager . redeemAt (r o l l o v e r_ . rounds [r o l l o v e r_ . th i sRound + 1] . c co I d) −
366 _ccoParams . e n r o l lmen t ;
367 uint256 newCcoId = ccoManager . createCCO (_ccoParams) ;
368 _addNextCco (_ r o l l o v e r I d , newCcoId) ;
369 }

Listing 3.6: RolloverCCO::createAndAddNextCco()

Recommendation Validate any untrusted input before it can be accepted for normal processing.
Also, guard any changes on the system-wide parameters to ensure they fall in an appropriate range.
Also, consider emitting related events for external monitoring and analytics tools.

15/30 PeckShield Audit Report #: 2021-112

Public

Status This issue has been fixed in the following commits: d1d14e5, 8477b11, e802dea, and
8f96dbb.

3.5 Incorrect Performance Fee Calculation

• ID: PVE-005

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: AllPairCCO

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned earlier, the Ondo protocol allows investors to shift the risk and reward balance between
each other. Currently, the protocol supports two types of investors: the senior tranche and junior

tranche. The senior tranche will receive a fixed percentage over their initial investments. The
junior tranche will receive any excess returns over the senior tranche. This fixed percentage, called
the hurdle rate, is determined when the product is created.

In particular, we show below the AllPairCCO::takePerformanceFee() routine that is used to cal-
culate the performance fee for the strategist. It comes to our attention that the calculated fee
is currently based on received amount by junior tranche, instead of the earned amount after the
hurdle rate reduction. As a result, the senior tranche may not get the expected hurdle rate.

789 f unc t i on takePer fo rmanceFee (CCO storage cco) i n t e r n a l r e tu rn s (uint256 f e e) {
790 f e e = 0 ;
791 i f (p e r f o rman c eF e eCo l l e c t o r != address (0)) {
792 Asse t storage j u n i o r = cco . a s s e t s [OLib . Tranche . J un i o r] ;
793 uint256 j u n i o rHu r d l e =
794 j u n i o r
795 . t o t a l I n v e s t e d
796 . f romUInt ()
797 . mul ((denominator + cco . hu rd l eRa t e) . f romUInt ())
798 . d i v (denominator . f romUInt ())
799 . t oU In t () ;

801 i f (j u n i o r . r e c e i v e d > j u n i o rHu r d l e) {
802 f e e = cco
803 . pe r fo rmanceFee
804 . f romUInt ()
805 . mul (j u n i o r . r e c e i v e d . f romUInt ())
806 . d i v (denominator . f romUInt ())
807 . t oU In t () ;
808 IERC20 (j u n i o r . token) . s a f eT ran s f e rF rom (
809 address (cco . s t r a t e g y) ,
810 pe r f o rmanc eFe eCo l l e c t o r ,

16/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/d1d14e5
https://github.com/ondoprotocol/protocol-audit/pull/1/commits/8477b11
https://github.com/ondoprotocol/protocol-audit/pull/1/commits/e802dea
https://github.com/ondoprotocol/protocol-audit/pull/1/commits/8f96dbb

Public

811 f e e
812) ;
813 }
814 }
815 }

Listing 3.7: AllPairCCO::takePerformanceFee()

Recommendation Revise the above calculations to ensure the senior tranche can get the
expected hurdle rate.

Status This issue has been confirmed.

3.6 Redundant Code Removal

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-563 [3]

Description

The Ondo protocol makes good use of a number of reference contracts, such as ERC20, SafeERC20,
SafeMath, and AccessControl, to facilitate its code implementation and organization. For example,
the AllPairCCO smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the UniswapStrategy::constructor() routine, it contains the
repeated initialization of registry (line 35).

30 cons t ruc to r (
31 address _reg i s t r y ,
32 address _router ,
33 address _fac to ry
34) BasePa i rLPSt ra t egy (_ r e g i s t r y) {
35 r e g i s t r y = Re g i s t r y (_ r e g i s t r y) ;
36 un iRoute r02 = IUniswapV2Router02 (_router) ;
37 un iFa c t o r y = _fac to ry ;
38 }

Listing 3.8: UniswapStrategy::constructor()

In addition, the updatePool() routine can be revised as the requirement on require(token0 !=

address(sushiToken)|| token1 != address(sushiToken)) is always true – as it is impossible to have a
pool with the same token0 and token1.

17/30 PeckShield Audit Report #: 2021-112

Public

247 f unc t i on updatePoo l (address _pool , address [] c a l l d a t a pathFromSushi)
248 ex te rna l
249 nonReent rant
250 noPanic
251 i s A u t h o r i z e d (OLib . STRATEGIST_ROLE)
252 {
253 r equ i r e (p oo l s [_pool] . _isSet , "Pool ID not yet registered") ;
254 address token0 = IUni swapV2Pa i r (_pool) . token0 () ;
255 address token1 = IUni swapV2Pa i r (_pool) . token1 () ;
256 r equ i r e (
257 token0 != address (sush iToken) token1 != address (sush iToken) ,
258 "Should never need to update pool with sushi token"
259) ;
260 address endToken = pathFromSushi [pathFromSushi . l ength − 1] ;
261 r equ i r e (
262 IUn i swapV2Pa i r (_pool) . token0 () == endToken
263 IUn i swapV2Pa i r (_pool) . token1 () == endToken ,
264 "Not a valid path for pool"
265) ;
266 PoolData storage poo lData = poo l s [_pool] ;
267 de le te poolData . pathFromSushi ;
268 poo l s [_pool] . pathFromSushi = pathFromSushi ;
269 }

Listing 3.9: SushiStrategyLP::updatePool()

Similarly, if we examine the AllPairCCO::depositFromRollover() routine, the internal require-
ment address(cco_.rollover)== msg.sender (line 441) is redundant as it is already guaranteed by
the onlyRollover(_ccoId, _rolloverId) modifier.

Recommendation Consider the removal of the redundant code in above routines.

Status This issue has been fixed in the following commits: 1d53499, fcc8a89, and 055bb88.

3.7 Accommodation of approve() Idiosyncrasies

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

18/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/1d53499
https://github.com/ondoprotocol/protocol-audit/pull/1/commits/fcc8a89
https://github.com/ondoprotocol/protocol-audit/pull/1/commits/055bb88

Public

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.10: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. In
the following, we use the SushiStrategyLP::addLiquidity() routine as an example. This routine is
designed to approve a specific token for swap contract. To accommodate the specific idiosyncrasy,
for each safeIncreaseAllowance(), there is a need to approve() twice (lines 445 − 446): the first one
reduces the allowance to 0; and the second one sets the new allowance.

440 f unc t i on a d d L i q u i d i t y (
441 address token0 ,
442 address token1 ,
443 uint256 amt0 ,
444 uint256 amt1 ,
445 uint256 minOut0 ,
446 uint256 minOut1
447)
448 i n t e r n a l
449 r e tu rn s (
450 uint256 out0 ,
451 uint256 out1 ,
452 uint256 l p
453)
454 {
455 IERC20 (token0) . s a f e I n c r e a s eA l l ow a n c e (address (s u s h iRou t e r) , amt0) ;
456 IERC20 (token1) . s a f e I n c r e a s eA l l ow a n c e (address (s u s h iRou t e r) , amt1) ;

19/30 PeckShield Audit Report #: 2021-112

Public

457 (out0 , out1 , l p) = su s h iRou t e r . a d d L i q u i d i t y (
458 token0 ,
459 token1 ,
460 amt0 ,
461 amt1 ,
462 minOut0 ,
463 minOut1 ,
464 address (t h i s) ,
465 block . timestamp
466) ;
467 }

Listing 3.11: SushiStrategyLP:: addLiquidity ()

Moreover, it is important to note that for certain non-compliant ERC20 tokens (e.g., USDT),
the transfer() function does not have a return value. However, the IERC20 interface has defined the
transfer() interface with a bool return value. As a result, the call to transfer() may expect a return
value. With the lack of return value of USDT’s transfer(), the call will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom().

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status This issue has been fixed in this commit: 074dd9b.

3.8 Trust Issue of Admin Keys

• ID: PVE-008

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Ondo protocol, there is a special administrative account gov with GOVERNANCE_ROLE. This gov

account plays a critical role in governing and regulating the system-wide operations (e.g., assign
various roles, specify the swap path, and set rollovers). It also has the privilege to regulate or

20/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/074dd9b

Public

govern the flow of assets among the involved components in the protocol. And the presence of an
administrative account can allow for emergency operations.

We emphasize that current privilege assignment is necessary and required for proper protocol
operation. However, it is worrisome if the gov is not governed by a DAO-like structure. The discussion
with the team has confirmed that the gov will be managed by a multi-sig account. Note that
a compromised gov account is capable of modifying current protocol configuaration with adverse
consequences on user funds.

Recommendation Promptly transfer the gov privilege to the intended DAO-like governance
contract.

Status This issue has been confirmed.

3.9 Possible Front-Running For Reduced Return

• ID: PVE-009

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

In the Ondo protocol, there is a SushiStrategyLP strategy that has an additional method harvest()

to occasionally convert earned Sushi into a balance of senior and junior assets to reinvest into LP
tokens, which are then placed into Masterchef to earn Sushi

To elaborate, we show below the SushiStrategyLP::harvest() routine. This routine delegates the
call to an internal _compound() handler to reinvest sushi/xsushi into LP tokens.

352 /**
353 * @notice Periodically reinvest sushi/xsushi into LP tokens
354 * @param pool Sushiswap pool to reinvest
355 */
356 f unc t i on h a r v e s t (address poo l) ex te rna l i s A u t h o r i z e d (OLib . STRATEGIST_ROLE) {
357 PoolData storage poo lData = poo l s [poo l] ;
358 _compound (IERC20 (poo l) , poo lData) ;
359 }

Listing 3.12: SushiStrategyLP:: harvest ()

277 f unc t i on _compound (IERC20 pool , PoolData s torage poolData) i n t e r n a l {
278 uint256 sushiAmt = sush iToken . ba lanceOf (address (t h i s)) ;
279 maste rChef . d e p o s i t (poo lData . p id , 0) ; // Called to trigger update in amount of sushi

truly available now

21/30 PeckShield Audit Report #: 2021-112

Public

280 xSush i . l e a v e (poo lData . pend ingXSush i) ;
281 poolData . pend ingXSush i = 0 ;
282 sushiAmt = sush iToken . ba lanceOf (address (t h i s)) − sushiAmt ;
283 i f (sushiAmt > 0) {
284 address [] memory pathFromSushi = ge tSush iPa th (poo lData . pathFromSushi) ;
285 address tokenA = pathFromSushi [pathFromSushi . l ength − 1] ;
286 address tokenB = IUni swapV2Pa i r (address (poo l)) . token0 () ;
287 i f (tokenB == tokenA) tokenB = IUni swapV2Pa i r (address (poo l)) . token1 () ;
288 uint256 amt0 ;
289 i f (tokenA == address (sush iToken)) {
290 amt0 = sushiAmt ;
291 } e l s e {
292 amt0 = swapExact In (sushiAmt , 0 , pathFromSushi) ;
293 }
294 uint256 amt0ToSwap ;
295 (uint256 r e s e r v e s 0 ,) =
296 Sush iSwapL ib r a r y . g e tR e s e r v e s (s u s h i F a c t o r y , tokenA , tokenB) ;
297 amt0 −= (amt0ToSwap = ca lcu la teSwapInAmount (r e s e r v e s 0 , amt0)) ;
298 uint256 amt1 = swapExact In (amt0ToSwap , 0 , getPath (tokenA , tokenB)) ;
299 (, , uint256 lpAmt) = ad dL i q u i d i t y (tokenA , tokenB , amt0 , amt1 , 0 , 0) ;
300 // TODO: do something with excess - will be extremely minimal though (<2)
301 poolData . t o t a l L p += lpAmt ;
302 }
303 poo l . s a f e I n c r e a s eA l l ow a n c e (
304 address (maste rChef) ,
305 poo l . ba lanceOf (address (t h i s))
306) ;
307 maste rChef . d e p o s i t (poo lData . p id , poo l . ba lanceOf (address (t h i s))) ;
308 }

Listing 3.13: SushiStrategyLP::_compound()

We notice the conversion is routed to Sushiswap in order to swap one token to another for liquidity
addition. And the swap operation does not specify any restriction on possible slippage and is therefore
vulnerable to possible front-running attacks, resulting in a smaller gain for this round of yielding.

Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a
large trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-
back of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes a
loss and brings a smaller return as expected to the trading user or the strategy contract in our case
because the swap rate is lowered by the preceding sell. As a mitigation, we may consider specifying
the restriction on possible slippage caused by the trade or referencing the TWAP or time-weighted

average price of UniswapV2. Nevertheless, we need to acknowledge that this is largely inherent to
current blockchain infrastructure and there is still a need to continue the search efforts for an effective
defense.

Recommendation Develop an effective mitigation to the above front-running attack to better
protect the interests of farming users.

22/30 PeckShield Audit Report #: 2021-112

Public

Status This issue has been fixed in this commit: 6b7f856.

3.10 Improved Business Logic in RolloverCCO::deposit()

• ID: PVE-010

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: RolloverCCO

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Ondo protocol also supports RolloverCCO that can automate the investment process by investing in
a series of similar CCOs. Investors can deposit money into the RolloverCCO, get a token to represent
their stake, and redeem it later to collect their investment plus profits (or losses). In the following,
we examine the deposit logic.

To elaborate, we use RolloverCCO::deposit() routine. The logic is rather straightforward in
allowing investors to deposit tokens into a queue to get invested in the next CCO. However, it comes
to our attention that when there is an excess and the excess is more than the deposited amount
for investment, there is a need to reset _amount = 0. The reset operation is missing in current logic,
resulting in possible loss for the depositing user.

437 f unc t i on d e p o s i t (
438 uint256 _ro l l o v e r I d ,
439 OLib . Tranche _tranche ,
440 uint256 _amount
441) ex te rna l noPanic notDead (_ r o l l o v e r I d) nonReent rant {
442 Ro l l o v e r storage r o l l o v e r_ = r o l l o v e r s [_ r o l l o v e r I d] ;
443 i f (r o l l o v e r_ . i n v e s t o r L a s tUpd a t e s [_tranche] [msg . sender] == 0) {
444 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] = 1 ;
445 }
446 {
447 Round storage round_ = r o l l o v e r_ . rounds [r o l l o v e r_ . th i sRound + 1] ;
448 uint256 c co I d = round_ . c co I d ;
449 r equ i r e (c co I d != 0 , "No CCO to deposit in yet") ;
450 r equ i r e (ccoManager . canDepos i t (c co I d) , "CCO not in deposit state") ;
451 TrancheRound s torage trancheRound_ = round_ . t r a n ch e s [_tranche] ;
452 OLib . I n v e s t o r storage i n v e s t o r_ = trancheRound_ . i n v e s t o r s [msg . sender] ;
453 uint256 t o t a l = trancheRound_ . newDepos i ted += _amount ;
454 uint256 userSum =
455 i n v e s t o r_ . userSums . l ength > 0
456 ? i n v e s t o r_ . userSums [i n v e s t o r_ . userSums . l ength − 1] + _amount
457 : _amount ;
458 i n v e s t o r_ . p r e f i xSums . push (t o t a l) ;
459 i n v e s t o r_ . userSums . push (userSum) ;

23/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/6b7f856

Public

460 }
461 i f (
462 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] <
463 r o l l o v e r_ . th i sRound + 1
464) {
465 (uint256 sha r e s , uint256 e x c e s s) =
466 _upda te Inve s to r (msg . sender , _ r o l l o v e r I d , _tranche) ;
467 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] =
468 r o l l o v e r_ . th i sRound +
469 1 ;
470 i f (e x c e s s > _amount) {
471 r o l l o v e r_ . a s s e t s [_tranche] . s a f eT r a n s f e r (msg . sender , e x c e s s − _amount) ;
472 } e l s e {
473 _amount −= ex c e s s ;
474 }
475 i f (s h a r e s > 0) {
476 r o l l o v e r_ . r o l l o v e rTo k e n s [_tranche] . mint (msg . sender , s h a r e s) ;
477 }
478 }
479 r o l l o v e r_ . a s s e t s [_tranche] . s a f eT ran s f e rF rom (
480 msg . sender ,
481 address (t h i s) ,
482 _amount
483) ;
484 emit Depos i t ed (msg . sender , _ r o l l o v e r I d , _amount) ;
485 }

Listing 3.14: RolloverCCO::deposit()

Recommendation Revise the deposit() logic in RolloverCCO to transfer user funds (via transferFrom

() at line 479) when the excess is already more than the intended amount for deposit.

Status This issue has been fixed in this commit: 5162589.

3.11 Potentially Repeated Excess Returns Of RolloverCCO

• ID: PVE-011

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: RolloverCCO

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

As mentioned in Section 3.10, the Ondo protocol supports RolloverCCO that can automate the invest-
ment process by investing in a series of similar CCOs. Our analysis shows an issue that may result
in multiple returns of the same excess amount.

24/30 PeckShield Audit Report #: 2021-112

https://github.com/ondoprotocol/protocol-audit/pull/1/commits/5162589

Public

To elaborate, the protocol starts with the round number 0 and participating users can call deposit
() to invest funds into the RolloverCCO contract. When the migrate() function is called to initiate
the investment into the next CCO, the first-time investment executes the _firstInvest() routine (line
618), which properly advances the rollover_.thisRound to 1 (line 771).

611 f unc t i on mig ra t e (uint256 _ro l l o v e r I d , S l i p p a g e S e t t i n g s memory _s l i ppage)
612 ex te rna l
613 noPanic
614 notDead (_ r o l l o v e r I d)
615 on l yC r e a t o r (_ r o l l o v e r I d)
616 {
617 i f (r o l l o v e r s [_ r o l l o v e r I d] . th i sRound == 0) {
618 _ f i r s t I n v e s t (
619 _ro l l o v e r I d ,
620 _s l i ppage . s e n i o rM i n I n v e s t ,
621 _s l i ppage . j u n i o rM i n I n v e s t
622) ;
623 } e l s e {
624 _migrate (_ r o l l o v e r I d , _s l i ppage) ;
625 }
626 }

Listing 3.15: RolloverCCO::migrate()

735 f unc t i on _ f i r s t I n v e s t (
736 uint256 _ro l l o v e r I d ,
737 uint256 _sen io rMin Inve s t ,
738 uint256 _jun i o rM in I n v e s t
739) i n t e r n a l {
740 Ro l l o v e r storage r o l l o v e r_ = r o l l o v e r s [_ r o l l o v e r I d] ;
741 Round s torage round_ = r o l l o v e r_ . rounds [1] ;
742 uint256 c co I d = round_ . c co I d ;
743 r equ i r e (round_ . c co I d != 0 , "CCO not set") ;
744 TrancheRound storage srRound = round_ . t r a n ch e s [OLib . Tranche . S en i o r] ;
745 TrancheRound storage j rRound = round_ . t r a n ch e s [OLib . Tranche . J un i o r] ;
746 r o l l o v e r_ . a s s e t s [OLib . Tranche . S en i o r] . s a f e I n c r e a s eA l l ow a n c e (
747 address (ccoManager) ,
748 srRound . newDepos i ted
749) ;
750 r o l l o v e r_ . a s s e t s [OLib . Tranche . J un i o r] . s a f e I n c r e a s eA l l ow a n c e (
751 address (ccoManager) ,
752 j rRound . newDepos i ted
753) ;
754 ccoManager . d e po s i t F r omRo l l o v e r (
755 cco Id ,
756 _ro l l o v e r I d ,
757 srRound . newDeposited ,
758 j rRound . newDepos i ted
759) ;
760 ccoManager . i n v e s t (cco Id , _sen i o rMin Inve s t , _ j un i o rM in I n v e s t) ;
761 (srRound . i n v e s t e d , j rRound . i n v e s t e d) = ccoManager . r o l l o v e r C l a im (
762 cco Id ,

25/30 PeckShield Audit Report #: 2021-112

Public

763 _r o l l o v e r I d
764) ;
765 srRound . d e p o s i t e d = srRound . i n v e s t e d ;
766 j rRound . d e p o s i t e d = jrRound . i n v e s t e d ;
767 srRound . new Inve s t ed = srRound . i n v e s t e d ;
768 j rRound . new Inve s t ed = jrRound . i n v e s t e d ;
769 srRound . s h a r e s = srRound . i n v e s t e d ;
770 j rRound . s h a r e s = jrRound . i n v e s t e d ;
771 r o l l o v e r_ . th i sRound = 1 ;
772 }

Listing 3.16: RolloverCCO:: _firstInvest ()

After that, a user may call claim(), which cascadingly calls updateInvestorDistribute() to claim
the excess amount (line 541). Moreover, if the user calls deposit() one more time, the if condi-
tion (lines 461 − 463) is satisfied to execute the then-branch, which includes the _updateInvestor()

execution. This execution allows the current depositing user to claim the excess amount a second
time.

492 f unc t i on c l a im (uint256 _ro l l o v e r I d , OLib . Tranche _tranche)
493 ex te rna l
494 noPanic
495 notDead (_ r o l l o v e r I d)
496 nonReent rant
497 {
498 Ro l l o v e r storage r o l l o v e r_ = r o l l o v e r s [_ r o l l o v e r I d] ;
499 i f (
500 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] !=
501 r o l l o v e r_ . th i sRound + 1
502) {
503 _upda t e I n v e s t o rD i s t r i b u t e (msg . sender , _ r o l l o v e r I d , _tranche) ;
504 }
505 }

Listing 3.17: RolloverCCO::claim()

437 f unc t i on d e p o s i t (
438 uint256 _ro l l o v e r I d ,
439 OLib . Tranche _tranche ,
440 uint256 _amount
441) ex te rna l noPanic notDead (_ r o l l o v e r I d) nonReent rant {
442 Ro l l o v e r storage r o l l o v e r_ = r o l l o v e r s [_ r o l l o v e r I d] ;
443 i f (r o l l o v e r_ . i n v e s t o r L a s tUpd a t e s [_tranche] [msg . sender] == 0) {
444 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] = 1 ;
445 }
446 {
447 Round storage round_ = r o l l o v e r_ . rounds [r o l l o v e r_ . th i sRound + 1] ;
448 uint256 c co I d = round_ . c co I d ;
449 r equ i r e (c co I d != 0 , "No CCO to deposit in yet") ;
450 r equ i r e (ccoManager . canDepos i t (c co I d) , "CCO not in deposit state") ;
451 TrancheRound s torage trancheRound_ = round_ . t r a n ch e s [_tranche] ;

26/30 PeckShield Audit Report #: 2021-112

Public

452 OLib . I n v e s t o r storage i n v e s t o r_ = trancheRound_ . i n v e s t o r s [msg . sender] ;
453 uint256 t o t a l = trancheRound_ . newDepos i ted += _amount ;
454 uint256 userSum =
455 i n v e s t o r_ . userSums . l ength > 0
456 ? i n v e s t o r_ . userSums [i n v e s t o r_ . userSums . l ength − 1] + _amount
457 : _amount ;
458 i n v e s t o r_ . p r e f i xSums . push (t o t a l) ;
459 i n v e s t o r_ . userSums . push (userSum) ;
460 }
461 i f (
462 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] <
463 r o l l o v e r_ . th i sRound + 1
464) {
465 (uint256 sha r e s , uint256 e x c e s s) =
466 _upda te Inve s to r (msg . sender , _ r o l l o v e r I d , _tranche) ;
467 r o l l o v e r_ . i n v e s t o r L a s tUpda t e s [_tranche] [msg . sender] =
468 r o l l o v e r_ . th i sRound +
469 1 ;
470 i f (e x c e s s > _amount) {
471 r o l l o v e r_ . a s s e t s [_tranche] . s a f eT r a n s f e r (msg . sender , e x c e s s − _amount) ;
472 } e l s e {
473 _amount −= ex c e s s ;
474 }
475 i f (s h a r e s > 0) {
476 r o l l o v e r_ . r o l l o v e rTo k e n s [_tranche] . mint (msg . sender , s h a r e s) ;
477 }
478 }
479 r o l l o v e r_ . a s s e t s [_tranche] . s a f eT ran s f e rF rom (
480 msg . sender ,
481 address (t h i s) ,
482 _amount
483) ;
484 emit Depos i t ed (msg . sender , _ r o l l o v e r I d , _amount) ;
485 }

Listing 3.18: RolloverCCO::deposit()

Recommendation Revise the deposit() to avoid repeated claims of any excess amount after
investment.

Status This issue has been resolved.

27/30 PeckShield Audit Report #: 2021-112

Public

4 | Conclusion

In this audit, we have analyzed the Ondo design and implementation. The system presents a unique,
robust offering as a decentralized protocol to allow investors to shift the risk and reward balance
between each other. The current code base is well structured and neatly organized. Those identified
issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

28/30 PeckShield Audit Report #: 2021-112

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

29/30 PeckShield Audit Report #: 2021-112

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Public

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

30/30 PeckShield Audit Report #: 2021-112

https://www.peckshield.com

	Introduction
	About Ondo
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Logic in Excess Withdrawal
	Duplicate Removal in Registry::tokensDeclaredDead()
	Explicit Input Validation in AllPairCCO::transition()
	Improved Sanity Checks For System Parameters
	Incorrect Performance Fee Calculation
	Redundant Code Removal
	Accommodation of approve() Idiosyncrasies
	Trust Issue of Admin Keys
	Possible Front-Running For Reduced Return
	Improved Business Logic in RolloverCCO::deposit()
	Potentially Repeated Excess Returns Of RolloverCCO

	Conclusion
	References

