
January 25th 2022 — Quantstamp Verified

Ondo Finance 3

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Yield Aggregator

Auditors Mohsen Ahmadvand, Senior Research Engineer

Poming Lee, Research Engineer

Timeline 2021-12-01 through 2021-12-22

EVM London

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification None

Documentation Quality Medium

Test Quality Undetermined

Source Code
Repository Commit

protocol-dev b574763

None f2c7b97 (re-audit)

Total Issues 27 (10 Resolved)

High Risk Issues 4 (2 Resolved)

Medium Risk Issues 1 (1 Resolved)

Low Risk Issues 7 (3 Resolved)

Informational Risk Issues 11 (4 Resolved)

Undetermined Risk Issues 4 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/ondoprotocol/protocol-dev
https://github.com/ondoprotocol/protocol-dev/tree/b574763be61201b359ffa078dfcc8bd1376c5d05
https://github.com/ondoprotocol/protocol-dev/tree/f2c7b976a7950b65f69795882e530c4d6db5c320


Summary of Findings

This audit was done on a subset of contracts in the Ondo repository (an exhaustive list of contracts can be found in the appendix). In our incremental audit we identified four high, one

medium, six low, eleven informational, and four undetermined-severity issues. Two of the high-severity issues are logical problems. Such issues should be detected through extensive

testing. The other two high-severity issues relate to the possibility of malicious behavior by the privileged roles in the protocol. The platform heavily relies on several external protocols

(Sushiswap, Uniswap, Pancake, etc.) across several chains. Consequently, Ondo will inherit all the vulnerabilities in its external dependencies. A large portion of the code duplicate of

strategies. This makes code maintenance and increases the chances of pitfalls.

ID Description Severity Status

QSP-1 can possibly inflateSushiStakingV2Strategy.depositIntoChef vault.shares High Fixed

QSP-2 deducts 2x LP per callDopexStrategy.removeLp High Fixed

QSP-3 enables the guardian role to execute arbitrary transactionsmultiexcall High Acknowledged

QSP-4 always sets to_updateInvestor investorLastUpdates 0 High Acknowledged

QSP-5 Use of unsafe transfers Medium Fixed

QSP-6 can potentially suffer from high slippagesEdenStrategy.harvest Low Fixed

QSP-7 and calls are suceptible to frontrunning attacksuniRouter02.removeLiquidity uniRouter02.addLiquidity Low Acknowledged

QSP-8 Ownership can be renounced Low Acknowledged

QSP-9 in the event is faultyamountTransferredFromUser Deposited Low Fixed

QSP-10 Unintended unstake in the Eden strategy Low Fixed

QSP-11 of tranche tokens can cause inconsistenciestokenMinting Low Acknowledged

QSP-12 doesn't check inputsRolloveVault._getUpdatedInvestor Informational Unresolved

QSP-13 Discrepancy between comments and implementation of newRollover Informational Fixed

QSP-14 Why do rounds start from 1 and not zero? Informational Acknowledged

QSP-15 Heavy storage usage (expensive gas) Informational Acknowledged

QSP-16 of a vault to a user investing through is not always validuserCap Rollover Informational Acknowledged

QSP-17 Use of initialised variables Informational Fixed

QSP-18 Ignored return values Informational Acknowledged

QSP-19 Missing zero input checks Informational Fixed

QSP-20 Dependency on several external contracts Informational Acknowledged

QSP-21 Allowance Double-Spend Exploit Informational Acknowledged

QSP-22 The enablement of of tranche tokens is not checkedtokenMinting Informational Fixed

QSP-23 Privileged Roles and Ownership Undetermined Acknowledged

QSP-24 Invalid and detrimental paths can be supplied to and_seniorToJuniorPath _juniorToSeniorPath Undetermined Acknowledged

QSP-25 skips one roundgetNextVault Undetermined Acknowledged

QSP-26 Potentially dangreous use of strict equality in createVault Undetermined Acknowledged

QSP-27 function lets the guardian to execute arbitrary transfersexcall Low Unresolved



Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.1• Slither

v0.2.7• Mythril

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

3. Installed the Mythril tool from Pypi: pip3 install mythril

4. Ran the Mythril tool on each contract: myth -x path/to/contract

Findings

QSP-1 can possibly inflateSushiStakingV2Strategy.depositIntoChef vault.shares

Severity: High Risk

FixedStatus:

,File(s) affected: contracts/strategies/SushiStakingV2Strategy.sol:483 contracts/strategies/SushiStrategyLP.sol:335

The implementation of in treats vault shares slightly differently than the corresponding implementation in .Description: depositIntoChef SushiStakingV2Strategy SushiStrategyLP
SushiStakingV2Strategy:

if (poolData.totalLp == 0 || poolData.totalShares == 0) {
poolData.totalShares = _amount * sharesToLpRatio;
poolData.totalLp = _amount;
vault.shares = _amount * sharesToLpRatio;

} else {
uint256 shares = (_amount * poolData.totalShares) / poolData.totalLp;
poolData.totalShares += shares;
vault.shares += shares; //HERE the shares are added to the current value

https://github.com/crytic/slither
https://github.com/ConsenSys/mythril


poolData.totalLp += _amount;
}

if (poolData.totalLp == 0 || poolData.totalShares == 0) {
poolData.totalShares = _amount;
poolData.totalLp = _amount;
vault.shares = _amount;

} else {
uint256 shares = (_amount * poolData.totalShares) / poolData.totalLp;
poolData.totalShares += shares;
vault.shares = shares; // HERE the shares are simply assigned
poolData.totalLp += _amount;

}

It is unclear why the two functions differ in vault share assignments.

Ensure that the identified discrepancy is not a bug. Consider writing test cases for the captured logical discrepancy between the two contracts.Recommendation:

QSP-2 deducts 2x LP per callDopexStrategy.removeLp

Severity: High Risk

FixedStatus:

File(s) affected: contracts/strategies/DopexStrategy.sol:145

The function calls that already includes a amount deduction: contracts/strategies/DopexStrategy.sol:115Description: removeLp withdrawFromStaking totalLp

function withdrawFromStaking(uint256 _amount) internal {
require(_amount > 0, "totalLP must be greater than 0");
stakingContract.withdraw(_amount);
totalLP -= _amount;

}

Nevertheless, the function includes another amount deduction resulting in a 2x value loss.removeLp totalLp

Remove the amount deduction from the function. Consider adding test cases capturing this very bug for all your strategy contracts.Recommendation: removeLp

QSP-3 enables the guardian role to execute arbitrary transactionsmultiexcall

Severity: High Risk

AcknowledgedStatus:

, ,File(s) affected: contracts/strategies/UniswapStrategy.sol contracts/strategies/SushiStakingV2Strategy.sol contracts/strategies/AUniswapStrategy.sol

The function provides batch execution to the guardian role. The user with such a role can execute any harmful transactions, e.g., to deplete the funds.Description: multiexcall

Ensure that users are informed about the guardians power in your protocol. Consider using multi-sig with a large enough set of users to mitigate the risk.Recommendation:

Response from Ondo:Update:

can be called by Guardian which is in turn a multisig and community is aware of this functionalityMultiexcall

QSP-4 always sets to_updateInvestor investorLastUpdates 0

Severity: High Risk

AcknowledgedStatus:

File(s) affected: contracts\RolloverVault.sol

always sets to instead of updating it to the index of the current round. This can potentially break the rounds accounting

logic.

Description: _updateInvestor:L447 investorLastUpdates 0

Ensure that the stated code does not lead to problems. We assume the correct behavior should be assigning to .Recommendation: investorLastUpdates rollover.thisRound + 1

Response from Ondo: > the internal variable investorLastUpdates is used to find the round number in which investor's funds are associated with. This variable is updated whenever there

is change of state to investor's funds i.e., claim, withdraw or deposits. When a new deposit is made, the round is updated to the round to which investor's funds are associated. When claim,

withdraw or a new deposit happens, if investorLastUpdates is 0 - then the shares and excess for the investor are computed from clean state. Else, existing shares,excess from the current round

are extracted and the investorLastUpdates is set to 0 because all the shares and excess are returned to the investor.

Update:

QSP-5 Use of unsafe transfers

Severity: Medium Risk

FixedStatus:

File(s) affected: contracts/strategies/helpers/AlchemixUserReward.sol

The contract does not check whether the transfer was succesful or not. More importantly, the usage of transfer is discouraged as it may run out of gas.Description:

Consider using openzeppelin's that reverts in case of failure.Recommendation: safeTransfer

QSP-6 can potentially suffer from high slippagesEdenStrategy.harvest

Severity: Low Risk

FixedStatus:

File(s) affected: contracts/strategies/EdenStrategy.sol

The function does not employ minimum expected value checks. This can enable attacker (bots) to potentially utilize flash loans imposing high slippages on the protocol.Description: harvest

Consider enforcing minimum expected value checks.Recommendation:



QSP-7 and calls are suceptible to frontrunning attacksuniRouter02.removeLiquidity uniRouter02.addLiquidity

Severity: Low Risk

AcknowledgedStatus:

,File(s) affected: contracts/strategies/UniswapStrategy.sol contracts/strategies/AUniswapStrategy.sol

We identified several calls to the and functions that set the minimum expected tokens to 0. This way of interacting with AMM pools is

susceptible to sandwich attacks.

Description: addLiquiditiy removeLiquidity

Here are code pointers to insecure AMM invocations:

1. contracts/strategies/AUniswapStrategy.sol:358~366

2. contracts/strategies/AUniswapStrategy.sol:456~463

3. contracts/strategies/AUniswapStrategy.sol:504~511

4. contracts/strategies/UniswapStrategy.sol:321~329

Consider computing the minimum expected values prior to the calls and checking them in your contracts.Recommendation:

Response from Ondo:Update:

We currently have checks outside the functions which make sure a certain slippage doesn’t exceed but we acknowledge that we can try to do better and use non 0 values.

QSP-8 Ownership can be renounced

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: Ondo.sol

has a function. Although it can only be called by the owner, contracts with (accidentally or maliciously) renounced ownerships can cause

a denial of service.

Description: Ownable.sol renounceOwnership()

Particularly, Ondo token's transferable state can no longer be set after ownership is renounced.

Consider using a two-step ownership transfer scheme and disabling the function.Recommendation: renounceOwnership

Response from Ondo:Update:

Ondo.sol is taken from Compound and uses the same trust assumptions that Compound token does. The owner will be a multis with 3 of 5 at least and hence its okay to keep this for

now.

QSP-9 in the event is faultyamountTransferredFromUser Deposited

Severity: Low Risk

FixedStatus:

File(s) affected: contracts/RolloverVault.sol:412~413

The amount deposited depends on the exceeding amount. If the exceeding amount is larger than the requested deposit amount, then nothing is transferred from the user. Instead,

the diff between the exceeding amount and the intended deposit amount is transferred back to the user. In the emitted event the captures an invalid value.

This results in incorrect information being displayed to the users in the frontend.

Description:

amountTransferredFromUser

emit Deposited(
msg.sender,
_rolloverId,
uint256(_tranche),
_amount,
int256(_amount) - int256(excess),
shares

);

Fix the value in the emit.Recommendation: amountTransferredFromUser

QSP-10 Unintended unstake in the Eden strategy

Severity: Low Risk

FixedStatus:

File(s) affected: contracts/strategies/EdenStrategy.sol

Whenever is smaller than , the function will not restake (i.e., calling ) after unstaking on , leaving all the

remaining unstaked and kept in the strategy contract.

Description: edenAmount 10000 harvest depositIntoStaking L158 totalLP

Make sure to restake at the end of function in all conditions.Recommendation: harvest

QSP-11 of tranche tokens can cause inconsistenciestokenMinting

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: contracts/Registry.sol

The functions in : - allow to enable/disable the of tranche tokens literally "at any time". This could

lead to internal accounting problems, such as part of the users getting the tranche tokens where some of the users do not.

Description: contracts/Registry.sol L78 L84 OLib.GOVERNANCE_ROLE tokenMinting

This feature should be limited, removed, or at least having all the changes to the platform carefully estimated by the admin team every time before enabling/disabling thisRecommendation:



feature.

Response from Ondo:Update:

is only given to a governance multis which is 3 of 5 and will never be used to turn on token_minting and turn it off, we are aware of the inconsistencies that can

occur if tokenMinting is turned on and off. It's meant to be used as a one time switch to turn on tokenMinting.

GOVERNANCE_ROLE

QSP-12 doesn't check inputsRolloveVault._getUpdatedInvestor

Severity: Informational

UnresolvedStatus:

File(s) affected: contracts/RolloverVault.sol:220~221

doesn't check if , inputs actually exist. It is indirectly consumed by several state-changing functions, viz.

, , , , and .

Description: RolloveVault.getUpdatedInvestor _rolloverId _tranche
_updateInvestor _updateInvestorDistribute deposit withdraw claim

Ensure that invalid inputs do not have an impact on the listed functions by adding test cases. Consider adding checks if inputs are valid.Recommendation:

The newly added require statement checks if creator is not address zero:Update:

require(rollover.creator != address(0), "Invalid rolloverId");

The check should verify if the provided , values exist._rolloverId _tranche

QSP-13 Discrepancy between comments and implementation of newRollover

Severity: Informational

FixedStatus:

File(s) affected: contracts/RolloverVault.sol

The function reverts upon a zero value for the argument. However, the comment indicates that in such cases params should be used as the basis to

create a new rollover: ```* @dev If _vaultId is 0, use _params for everything. Otherwise, inherit most params from _vaultId instance

Description: newRollover _vaultId

• @param _vaultId Optional Vault to inherit parameters from … require(_vaultId != 0, "Invalid vaultId"); ```

Ensure that the revert reflects the intended behavior.Recommendation:

QSP-14 Why do rounds start from 1 and not zero?

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/RolloverVault.sol:231

The rollover.rounds considers index 1 as the starting element. It is not clear why index 0 is skipped.Description:

function newRollover(uint256 _vaultId, OLib.RolloverParams memory _params)
Rollover storage rollover = rollovers[rolloverId];
require(rollover.rounds[1].vaultId == 0, "Already exists");
...

rollover.rounds[1].vaultId = _vaultId;

Ensure that the logic is correct.Recommendation:

Response from Ondo:Update:

Round 0 is considered a special round which means open for deposits.

QSP-15 Heavy storage usage (expensive gas)

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/RolloverVault.sol

The implementation is extremely storage-intensive. This can lead to expensive transactions or possibly denial of service if a transaction becomes larger than one block.Description:

rollovers ->   mapping(uint256 => Rollover) internal rollovers;

struct Rollover {
address creator;
address strategist;
mapping(uint256 => Round) rounds;
mapping(OLib.Tranche => IERC20) assets;
mapping(OLib.Tranche => ITrancheToken) rolloverTokens;
mapping(OLib.Tranche => mapping(address => uint256)) investorLastUpdates;
uint256 thisRound;
bool dead;

}

struct Round {
uint256 vaultId;
mapping(OLib.Tranche => TrancheRound) tranches;

}

struct TrancheRound {
uint256 deposited;
uint256 invested; // Total, if any, actually invested
uint256 redeemed; // After Vault is done, total tokens redeemed for LP
uint256 shares;
uint256 newDeposited;
uint256 newInvested;
mapping(address => OLib.Investor) investors;

}

struct Investor {
uint256[] userSums;
uint256[] prefixSums;



bool claimed;
bool withdrawn;

}

Round storage round = rollover.rounds[rollover.thisRound + 1]; ->
round.tranches[_tranche];
OLib.Investor storage investor = trancheround.investors[msg.sender];
investor.userSums[...]
vaultView.assets[uint256(_tranche)]

For instance, storing every deposited amount ( ) might not be necessary to achieve the intended goals.userSums

Perform a gas usage analysis. Consider refactoring the code to use less storage when possible.Recommendation:

Response from Ondo:Update:

This is the design of contracts and cannot be changed at this stage, we will take this into consideration for the next iterations

QSP-16 of a vault to a user investing through is not always validuserCap Rollover

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/RolloverVault.sol

Currently for the Rollover contract, whenever a user calls , the contract will check if , where is for the vault for the

round. However, if the user already invested before and never calls that function again, this check will never be performed again. And this restriction will

no longer be valid when the of vaults in the following rounds is smaller than the of the user.

Description: deposit userSum <= userCap userCap
rollover.thisRound + 1 deposit

userCap userSum

There is no solution to fix this problem without redesigning the mechanism. We recommend the admin team to evaluate if this level of violation to the restriction is acceptable.Recommendation:

Response from Ondo:Update:

The check is to stop users from depositing into the vault beyond the usercap. However, if the usercap is exceeded in the subsequent rounds we shouldn’t limit rounds with this

restriction. That is how the contract is designed

QSP-17 Use of initialised variables

Severity: Informational

FixedStatus:

Several usage of uninitialised variables were detected throughout the source code:Description:

EdenStrategy.harvest(uint256).wethAmount (contracts/strategies/EdenStrategy.sol#161) is a local variable never initialized
BondStrategy.harvest(uint256).usdcAmount (contracts/strategies/BondStrategy.sol#157) is a local variable never initialized
AlchemixLPStrategy._compound().ethAmount (contracts/strategies/AlchemixLPStrategy.sol#328) is a local variable never initialized
RolloverVault.deposit(uint256,OLib.Tranche,uint256).excess (contracts/RolloverVault.sol#358) is a local variable never initialized
AlchemixLPStrategy._compound().amountToSwap (contracts/strategies/AlchemixLPStrategy.sol#372) is a local variable never initialized
RolloverVault._getUpdatedInvestor(address,uint256,OLib.Tranche).shares (contracts/RolloverVault.sol#199) is a local variable never initialized
SushiStakingV2Strategy._compound(IERC20,SushiStakingV2Strategy.PoolData).amountToSwap (contracts/strategies/SushiStakingV2Strategy.sol#408) is
a local variable never initialized
DopexStrategy.harvest(uint256).wethAmount (contracts/strategies/DopexStrategy.sol#160) is a local variable never initialized

Ensure to initialise every variable before use to avoid unexpected results.Recommendation:

QSP-18 Ignored return values

Severity: Informational

AcknowledgedStatus:

,File(s) affected: contracts/RolloverVault.sol:667~674 contracts/RolloverVault.sol:799~800

and ignore return values of and , respectively.Description: RolloverVault._migrate RolloverVault._invest AllPairsVault.redeem AllPairsVault.invest

Consider not returning anything if the values are not needed.Recommendation:

Response from Ondo:Update:

we need these return values to get minimums to prevent slippage while executing non-rollover vault invest/redeem

QSP-19 Missing zero input checks

Severity: Informational

FixedStatus:

The listed contracts do not check the input parameters:Description:

1. : : address in .contracts\SampleFeeCollector.sol L23 vault constructor

2. : : .contracts\TrancheToken.sol L37 _vault

3. : - : and .contracts\Registry.sol L35 L37 _governance _weth

Consider checking the input parameters.Recommendation:

QSP-20 Dependency on several external contracts

Severity: Informational

AcknowledgedStatus:



The protocol relies on functionalities of external contracts such as: UniswapV2, Sushiswap, Quickswap, Pancakeswap, etc. Therefore, security of the project depends on these

contracts. While we are unaware of any immediate issues, it is important to note that DeFi protocols can be susceptible to flash loan attacks, market manipulation, computational errors, etc.

Description:

We strongly recommend to monitor all the external contracts and follow up on their vulnerabilities. Consider integrating logics to redeem all funds quickly from strategies in

case of zero-day hacks.

Recommendation:

Response from Ondo:Update:

We will monitor all the contracts that we are interacting with and have a test suite to test it with forking

QSP-21 Allowance Double-Spend Exploit

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/TrancheToken.sol

As it presently is constructed, the contract is vulnerable to the , as with other ERC20 tokens.Description: allowance double-spend exploit

Exploit Scenario:

1. Alice allows Bob to transfer amount of Alice's tokens ( ) by calling the method on smart contract (passing Bob's address and as method
arguments)

N N>0 approve() Token N

2. After some time, Alice decides to change from to ( ) the number of Alice's tokens Bob is allowed to transfer, so she calls the method again, this time
passing Bob's address and as method arguments

N M M>0 approve()

M

3. Bob notices Alice's second transaction before it was mined and quickly sends another transaction that calls the method to transfer Alice's tokens
somewhere

transferFrom() N

4. If Bob's transaction will be executed before Alice's transaction, then Bob will successfully transfer Alice's tokens and will gain an ability to transfer another tokensN M

5. Before Alice notices any irregularities, Bob calls method again, this time to transfer Alice's tokens.transferFrom() M

The exploit (as described above) is mitigated through use of functions that increase/decrease the allowance relative to its current value, such as and

.

Recommendation: increaseAllowance()
decreaseAllowance()
Pending community agreement on an ERC standard that would protect against this exploit, we recommend that developers of applications dependent on /

should keep in mind that they have to set allowance to 0 first and verify if it was used before setting the new value. Teams who decide to wait for such a standard should make these

recommendations to app developers who work with their token contract.

approve() transferFrom()

Response from Ondo:Update:

TrancheToken is mostly taken from open zeppelin and has the functions that are recommended, we will recommend the users to use increaseAllowance instead of approve.

QSP-22 The enablement of of tranche tokens is not checkedtokenMinting

Severity: Informational

FixedStatus:

File(s) affected: contracts\AllPairVault.sol

The functions that trigger mint do not check whether minting is enabled or not: The enablement of of tranche tokens is not checked in:Description: tokenMinting

1. : -contracts\AllPairVault.sol L541 L544

2. : -contracts\AllPairVault.sol L545 L548

3. : -contracts\AllPairVault.sol L896 L903

4. :contracts\AllPairVault.sol L1142

Consider checking whether the mint is enbaled before calling .Recommendation: mint

QSP-23 Privileged Roles and Ownership

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: contracts\AllPairVault.sol

Smart contracts will often have variables to designate the person with special privileges to make modifications to the smart contract. There are some actions that could have

important consequences for end-users. The in the Ondo platform is be able to execute arbitrary code on .

Description: owner
OLib.GUARDIAN_ROLE contracts\AllPairVault.sol

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

Response from Ondo:Update:

Multiexcall can be called by Guardian which is in turn a multisig.

QSP-24 Invalid and detrimental paths can be supplied to and_seniorToJuniorPath _juniorToSeniorPath

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: contracts/strategies/UniswapStrategy.sol

and functions accepts any arbitrary conversion paths. Invalid paths (paths that do not end with junior or senior tranche

tokens accordingly) can lead to undetermined issues in the protocol. Moreover, paths can have different economical characteristics. As constructed, the strategist role can set those paths. A

strategist can potentially favour paths to their benefit and in determent to other users (e.g., to include their own pools by forcing unnecessary swaps to certain tokens).

Description: setPathJuniorToSenior setPathSeniorToJunior

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/b4f87bb8fc25fb07f73099701e39e167a3d36465/contracts/token/ERC20/ERC20.sol#L71-L78


Ensure the the path array's last element matches the senior and junior tranche tokens in the and functions,

respectively. Inform the users (through the public-facing documentations) about the strategist's power in setting paths in the protocol. Consider enabling the protocol users to vote on the swap

paths or use third-party contracts to compute paths with the highest returns.

Recommendation: setPathJuniorToSenior setPathSeniorToJunior

Response from Ondo:Update:

It's done on purpose to allow for arbitrary paths if needed, this strategy is mostly used with our DAO partners who can request different tokens or different trades and we did not

want to limit setting the paths

QSP-25 skips one roundgetNextVault

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: contracts/RolloverVault.sol:181

looks up in :Description: getNextVault rollover.thisRound + 2 rollover.rounds

uint256 vaultId = rollover.rounds[rollover.thisRound + 2].vaultId;

In the previous audit the look up index was .rollover.thisRound + 1

Ensure that the implementation is correct. Consider adding test cases to verity the correctness.Recommendation:

Response from Ondo:Update:

The implementation is correct. Added more tests to validate this.

QSP-26 Potentially dangreous use of strict equality in createVault

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: contracts/AllPairVault.sol:337

Description: The createVault function sets the value to the passed input ( ). The function requires the startTime to be greater than/equal to the

current block timestamp at line #267: Thereupon, the function checks if the startAt is strictly equal to

the current block's timestamp to decide whether to set the vault_.state to deposit (#337-#339):

Description: startAt _params.startTime
require(_params.startTime >= block.timestamp, "Invalid start time");

if (vault_.startAt == block.timestamp) {
vault_.state = OLib.State.Deposit;

}

It unclear what will happen if the deposit state condition is not met (i.e., ). Given that the state of deposit can not be set otherwise, the contract may

experience denial of service. It is not safe to rely on the block.timestamp to be what you expect it to be upon triggering a createVault call.

vault_.startAt != block.timestamp

Ensure that the described circumstances does not lead to a denial of service. Consider turning the deposit state into a dynamically computed state, instead of storing it:Recommendation:

function canDepositIntoVault view internal (){
return vault_.startAt <= block.timestamp;

}

Response from Ondo:Update:

This isn’t a bug, its an optimisation, the idea is that if the start time happens to be exactly the same as block time, then vault state changes to deposit. It is ensured that this does not

cause a denial of service.

QSP-27 function lets the guardian to execute arbitrary transfersexcall

Severity: Low Risk

UnresolvedStatus:

File(s) affected: contracts/RolloverVault.sol

The newly added function enables the guardian to execute arbitrary transfers:Description:

function excall(address target, bytes calldata data)
external
isAuthorized(OLib.GUARDIAN_ROLE)
returns (bytes memory returnData)

{
bool success;
(success, returnData) = target.call(data);
require(success, "CF");

}

It is not clear why the guardian needs to have such a privilege in the system. This can lead to fund losses if the guardian is compromised.

Include the stated function in the public-facing documentation and justify the need for such a function. Consider using multisig for the guardian role.Recommendation:

Automated Analyses

Slither

We analysed the findings and incorporated the relevant issues to the report.

Adherence to Specification

1. : : should be instead, otherwise should modify the warning message to .contracts\AllPairVault.sol L272 1e6 1000000%



Code Documentation

1. Consider describing the mechanism of and in the and .contracts\RolloverVault.sol ROLLOVER_ROLE documentations roles

2. : : mis-spell in word .contracts\RolloverVault.sol L37 Rollove

3. : : mis-spell in word .contracts\RolloverVault.sol L42 exces

Adherence to Best Practices

1. Strategies seem to have a lot in common. The strategy logic entails depositing assets, tracking LP tokens, withdrawing and re-investing (compounding), and redeeming.
This common logic is to a great extend duplicated across the contracts. Maintaining and securing all the duplicated code will have a huge overhead. Consider
refactoring the code such that all the common codes reside in one single contract. By restoring to hooks you can have the flexibility of calling platform-specific codes to
write platform-agnostic strategies.

2. : the use of class instance for rollover tokens is confusing. Consider creating another class that inherits
and named it as to improve the clarity of the code.
contracts\RolloverVault.sol TrancheToken TrancheToken

RolloverToken

3. : the condition ">" is not possible. Consider reviewing the possibility of this condition again and make sure if the handling logic in
is acceptable.

contracts\RolloverVault.sol L731

L732

4. TODO in : .contracts\strategies\DopexStrategy.sol L91

5. TODO in : .contracts\strategies\DopexStrategy.sol L148

6. : consider adding a zero check to the of function in order to make sure that an uninitialised vault
could never get pass the check (i.e., ) in .
contracts\AllPairVault.sol _params.strategist createVault

address(vault_.strategist) == address(0) L302

7. : please make sure that the strict equality check in this line is intended, and cannot be replaced by .contracts\AllPairVault.sol L337 == >=

8. : function uses a list to record input dead tokens. This list does not guarantee the uniqueness of the dead
tokens. This could lead to errors in the function when trying to recycle the dead tokens. Please make sure that this condition does not happen.
contracts\Registry.sol tokensDeclaredDead deadTokens

recycleDeadTokens

9. is not initalized in the abstract class but used in some functions is not initialized in the
constructor of . However, it is used by some abstract function implementations. Both consumers of , viz.

, and , do initialize in their
constructors. Nevertheless, it is a better practice to initialize all the used variables as part of the abstract class construtor.

mainToken contracts/strategies/ASushiswapStrategy.sol mainToken

ASushiswapStrategy ASushiswapStrategy

bsc/contracts/strategies/PancakeStrategyLP.sol polygon/contracts/strategies/QuickswapStrategyLP.sol mainToken

solidity constructor( address

_registry, address _router, address _rewardsFactory, address _factory, address _mainToken, address _stakingRewardToken )

ASushiswapStrategy(_mainToken /*initialize ASushiswapStrategy._mainToken*/, _registry, _router, _factory)

10. apply the check-effects-interactions pattern to prevent re-entrancy attacks:
1. AUniswapStrategy._invest(uint256,uint256,uint256,uint256,uint256,uint256,uint256) (contracts/strategies/AUniswapStrategy.sol#225-259)

2. RolloverVault._migrate(uint256,IRollover.SlippageSettings) (contracts/RolloverVault.sol#659-723)

3. AllPairVault._withdraw(uint256,OLib.Tranche,address) (contracts/AllPairVault.sol#824-852)

4. SushiStakingV2Strategy.midTermDepositLp(IERC20,uint256) (contracts/strategies/SushiStakingV2Strategy.sol#190-219)

5. SushiStrategyLP.midTermDepositLp(IERC20,uint256) (contracts/strategies/SushiStrategyLP.sol#199-209)

6. RolloverVault.newRollover(uint256,OLib.RolloverParams) (contracts/RolloverVault.sol#231-302)

7. AlchemixLPStrategy.removeLp(uint256,uint256,address) (contracts/strategies/AlchemixLPStrategy.sol#247-271)

8. BondStrategy.removeLp(uint256,uint256,address) (contracts/strategies/BondStrategy.sol#134-143)

9. DopexStrategy.removeLp(uint256,uint256,address) (contracts/strategies/DopexStrategy.sol#136-146)

10. EdenStrategy.removeLp(uint256,uint256,address) (contracts/strategies/EdenStrategy.sol#138-147)

11. SushiStakingV2Strategy.removeLp(uint256,uint256,address) (contracts/strategies/SushiStakingV2Strategy.sol#159-185)

12. SushiStrategyLP.removeLp(uint256,uint256,address) (contracts/strategies/SushiStrategyLP.sol#158-182)

11. Consider declaring the following functions as external:
1. rescueTokens(address[],uint256[]) (contracts/OndoRegistryClientInitializable.sol#73-80)

2. authorized(bytes32,address) (contracts/Registry.sol#58-65)

3. paused() (contracts/Registry.sol#99-101)

Test Results

Test Suite Results

13 tests are failing.

Network Info
============
> HardhatEVM: v2.6.2
> network:    hardhat

No need to generate any newer typings.
(node:8413) Warning: Accessing non-existent property 'padLevels' of module exports inside circular dependency
(Use `node --trace-warnings ...` to show where the warning was created)

masterchefv2 dual incentive pool
mcv2 vault lifecycle

https://docs.ondo.finance/
https://docs.ondo.finance/architecture/roles


✓ get assets (13584ms)
✓ create vaults (3996ms)
✓ deposit assets and fast-forward (10355ms)
✓ invest ALCX/ETH vault (35228ms)
✓ invest ETH/ALCX vault (6754ms)
1) get LP from the sushiswap pool and deposit
2) withdraw LP from ALCX/ETH vault
3) deposit LP in ALCX/ETH vault
✓ harvest (353ms)
✓ harvest (342ms)
✓ harvest (359ms)
✓ harvest (336ms)
✓ harvest (335ms)
✓ harvest (335ms)
✓ redeem ALCX/ETH vault (3252ms)
✓ redeem ETH/ALCX vault (745ms)

EdenStrategy - WETH-EDEN helper
4) "before all" hook in "EdenStrategy - WETH-EDEN helper"

BondStrategy - USDC-BOND helper
USDC-BOND - deployment validation

✓ should not allow zero address for the staking address deploying uniswap strategy (609ms)
✓ should not allow zero address for the yieldfarm address deploying uniswap strategy
✓ should not allow zero address for the usdc address deploying uniswap strategy
✓ should not allow zero address for the bond address deploying uniswap strategy
✓ should not allow zero address for the usdcBondUniLp address deploying uniswap strategy
USDC-BOND - vault lifecycle

✓ should allow Creator to create vault (1192ms)
✓ should NOT allow any one other than creator to create vault
✓ should allow investors to deposit assets in the junior tranche when with in the user and tranche cap (3701ms)
✓ should allow investors to deposit assets in the senior tranche when with in the user and tranche cap (2745ms)
✓ should not allow strategist to invest before the investAt time
✓ should not allow investors to deposit assets when exceeds usercap for the tranche
✓ should not allow investors to deposit assets in the live vault
✓ should allow investors to claim uninvested asset plus tranche tokens for the corresponding asset
✓ should not return tranche tokens on claim if enableTokens flag is disabled
✓ should allow investors to deposit ETH into Active vault only if the tranche is WETH
✓ should allow investors to claim ETH though the vault asset is WETH
✓ should allow performance fee to be set and changed by strategist on inactive vaults only
✓ should not allow performance fee to be more than a predetermined amount
✓ should be able to retrieve vault for specific vault index or a range of vault indexes
✓ should be able to retrieve vault for specific trancheToken address
✓ should be able to retrieve expected senior amount for the vault
✓ should be able to retrieve correct usercaps set in the vault
✓ should be able to retrieve all the correct details of vault investor like position, claimable and withdrawable balances, excess
USDC-BOND vault behaviour - invest

✓ should allow strategist to invest - On invest one asset should go to 0 (12794ms)
USDC-BOND vault behaviour - harvest and redeem

✓ should increase the amount of lp tokens in staking contract when harvest in strategy is called (44760ms)
✓ should not redeem if the slippage is too high (3367ms)
✓ should increase both sr and jr values on redeem (400ms)
✓ should calculate the correct amount of shares for given number of lp tokens
✓ should calculate the correct amount of lptokens for given number of shares
✓ should not compound if sushi rewards and second rewards are less than 10000
✓ should convert all the sushi to the end asset in path[0] in pool and all reward tokens to the end asset path[1] in the pool and invest into LP
✓ should be able to get more LP with better reward paths. eg., instead of [[sushi,DAI],[LDO,ETH,DAI,WSTETH]] we should be able to use [[sushi,DAI],[LDO,ETH,DAI]]
✓ should be able to compound with senior uninvested leftover
✓ should be able to compound with junior uninvested leftover
✓ should be able to compound with no uninvested leftover
✓ should be able to compound when tokenA is leftover after investing both rewards into LP
✓ should be able to compound when tokenB is leftover  after investing both rewards into LP
USDC-BOND mid term deposits

✓ should allow investors to claim senior tranche tokens and excess (109ms)
5) should allow investors to claim junior tranche tokens and excess
✓ should allow investors to trade tranche tokens (119ms)
✓ should allow investors to withdraw LP tokens (525ms)
✓ should allow investors to deposit LP in the Live vault and get back tranche tokens (554ms)
✓ should allow harvest and redeem if all LP is withdrawn
✓ should not allow investors to deposit LP when vault is not Live
✓ should allow investors to deposit ETH into Active vault only if the tranch is WETH
✓ should allow investors to withdraw ETH even though the balance in strategy is WETH
✓ should allow investors to withdraw LP in the correct ratio by depositing tranche tokens. Only correct ratio of tranche tokens burnt and remaining left in the contract
✓ should allow governace to set performanceFee collector for vault
✓ should increase the amount of lp tokens in staking contract when harvest in strategy is called (472ms)
✓ should allow redeem and burn tranche tokens (1097ms)
USDC-BOND emergency withdraw from Uniswap

✓ should allow governace to withdraw LP from uniswap to strategy (42ms)
✓ should not allow any one other than governace to call multiexcall
✓ should return error if multicall fails
✓ should allow guardian role to rescue the tokens from strategy (47ms)
✓ should not allow anyone other than guardian role to rescue the LP tokens withdrawn from mcv2

Claim
✓ Create vault (1373ms)
✓ Get some DAI
✓ Deposit on both sides (11687ms)
✓ Move to invest state (2627ms)
✓ Try to claim DAI (69ms)
✓ Try to claim ETH (70ms)
✓ Redeem funds (1897ms)
✓ Withdraw all funds (146ms)

Create2
✓ create Vault (3587ms)

Performance fees
delayed Vault

✓ setup vault fixture (2810ms)
✓ create vault (1354ms)
✓ can only deposit after start time (1074ms)
✓ setup fee collector and performance fee
✓ deposits after start time (112ms)
✓ invest and redeem (292ms)

Ondo
metadata

✓ has a name
✓ has a symbol

balanceOf
✓ grants to initial account

delegateBySig
✓ reverts if the signatory is invalid (565ms)
✓ reverts if the nonce is bad
✓ reverts if the signature has expired
✓ delegates on behalf of the signatory

numCheckpoints
✓ returns the number of checkpoints for a delegate (114ms)

Ondo transfer disabled
✓ transfer reverts when transfers are disabled
✓ account with owner permission can transfer
✓ transferAllowed works correctly

Registry
✓ grant roles
✓ register contracts

Rescue functions
pause and rescue asset and LP tokens

✓ doesn't allow rescuing tokens outside of pause mode
✓ pauses and freezes Vault functions (123ms)
✓ rescue tokens (72ms)
✓ stops the pause and restores functionality

test reverts
✓ reverts (1164ms)

RolloverVault
basic round

✓ create pool (4907ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (1027ms)
✓ sucess: create rollover (3977ms)
✓ success: deposit senior asset (263ms)
✓ success: deposit junior asset (264ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (85ms)
✓ revert: add vault with invalid tranche assets (1108ms)
✓ revert: add vault with invalid start time (1036ms)
✓ success: adds another Vault to rollover tip (1112ms)
✓ success: migrate (286ms)

round with single deposit
✓ create pool (3123ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (975ms)
✓ sucess: create rollover (2996ms)
✓ success: single deposit (95ms)
✓ success: deposit senior asset (263ms)
✓ success: deposit junior asset (264ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (77ms)
✓ revert: add vault with invalid tranche assets (1014ms)
✓ revert: add vault with invalid start time (1097ms)
✓ success: adds another Vault to rollover tip (1131ms)
✓ success: migrate (289ms)

round with claim



✓ create pool (3067ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (965ms)
✓ sucess: create rollover (4968ms)
✓ success: single deposit (92ms)
✓ success: single deposit (89ms)
✓ success: deposit senior asset (265ms)
✓ success: deposit junior asset (268ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (82ms)
✓ revert: add vault with invalid tranche assets (1014ms)
✓ revert: add vault with invalid start time (2004ms)
✓ success: adds another Vault to rollover tip (1099ms)
✓ success: migrate (282ms)
✓ success: claim user tokens and excess (57ms)
✓ success: claim user tokens and excess (55ms)

round with withdraw
✓ create pool (3166ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (967ms)
✓ sucess: create rollover (1976ms)
✓ success: single deposit (91ms)
✓ success: single deposit (89ms)
✓ success: deposit senior asset (273ms)
✓ success: deposit junior asset (266ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (77ms)
✓ revert: add vault with invalid tranche assets (2070ms)
✓ revert: add vault with invalid start time (1120ms)
✓ success: adds another Vault to rollover tip (1201ms)
✓ success: migrate (278ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares (71ms)
✓ success: withdraw (124ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares (39ms)
✓ success: withdraw (119ms)

round with depositLp
✓ create pool (3524ms)
✓ revert: create rollover with invalid vault id (99ms)
✓ revert: create rollver with invalid start time (1089ms)
✓ sucess: create rollover (2042ms)
✓ success: single deposit (88ms)
✓ success: single deposit (91ms)
✓ success: deposit senior asset (270ms)
✓ success: deposit junior asset (267ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (77ms)
✓ revert: add vault with invalid tranche assets (990ms)
✓ revert: add vault with invalid start time (1023ms)
✓ success: adds another Vault to rollover tip (1084ms)
✓ success: migrate (274ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares
✓ success: withdraw (119ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares
✓ success: withdraw (114ms)
✓ success: deposit LP tokens mid-duration with signer 7 (674ms)

round with withdrawLp
✓ create pool (3072ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (2013ms)
✓ sucess: create rollover (2028ms)
✓ success: single deposit (83ms)
✓ success: single deposit (92ms)
✓ success: deposit senior asset (267ms)
✓ success: deposit junior asset (267ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (74ms)
✓ revert: add vault with invalid tranche assets (997ms)
✓ revert: add vault with invalid start time (1038ms)
✓ success: adds another Vault to rollover tip (1098ms)
✓ success: migrate (276ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares (40ms)
✓ success: withdraw (113ms)
✓ revert: withdraw zero amount
✓ revert: withdraw more than shares
✓ success: withdraw (119ms)
✓ success: deposit LP tokens mid-duration with signer 7 (694ms)
✓ success: deposit LP tokens mid-duration with signer 8 (693ms)
✓ success: withdraw LP mid-duration with signer 7 (221ms)
✓ success: withdraw LP mid-duration with signer 8 (225ms)

deposit after claim
✓ create pool (5586ms)
✓ revert: create rollover with invalid vault id
✓ revert: create rollver with invalid start time (980ms)
✓ sucess: create rollover (1985ms)
✓ success: single deposit (92ms)
✓ success: single deposit (88ms)
✓ success: deposit senior asset (271ms)
✓ success: deposit junior asset (268ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (73ms)
✓ revert: add vault with invalid tranche assets (1000ms)
✓ revert: add vault with invalid start time (1007ms)
✓ success: adds another Vault to rollover tip (1066ms)
✓ success: migrate (277ms)
✓ success: claim user tokens and excess (50ms)
✓ success: claim user tokens and excess (53ms)
✓ success: single deposit (88ms)
✓ success: single deposit (91ms)
✓ success: deposit senior asset (313ms)
✓ success: deposit junior asset (297ms)
✓ revert: deposit with invalid rollover id
✓ revert: deposit exceeds senior user cap (79ms)
✓ revert: add vault with invalid tranche assets (994ms)
✓ revert: add vault with invalid start time (1000ms)
✓ success: adds another Vault to rollover tip (1089ms)
✓ success: migrate (638ms)
✓ success: claim user tokens and excess (271ms)
✓ success: claim user tokens and excess (55ms)

StakingPools
✓ should set correct state variables (442ms)
✓ should allow emergency withdraw (328ms)
✓ should give out ondos only after farming time (2036ms)
✓ should not distribute ONDOs if no one deposit (1136ms)
✓ should distribute ondos properly for each staker (2475ms)
✓ should give proper ONDOs allocation to each pool (1578ms)
✓ should stop giving bonus ONDOs after the bonus period ends (2079ms)
✓ should track minimumOndoRequiredBalance properly (1725ms)

SushiStrategyLP
✓ pool add and update reverts (13238ms)
batchCreate

✓ create Vault: sell senior for leveraged junior returns (1013ms)
✓ create Vault: sell all junior to partially cover senior (993ms)
✓ create Vault: sell some junior to cover senior (1050ms)

batchDeposit
✓ deposit senior asset: sell senior for leveraged junior returns (143ms)
✓ deposit junior asset: sell senior for leveraged junior returns (146ms)
✓ deposit senior asset: sell all junior to partially cover senior (145ms)
✓ deposit junior asset: sell all junior to partially cover senior (137ms)
✓ deposit senior asset: sell some junior to cover senior (228ms)
✓ deposit junior asset: sell some junior to cover senior (505ms)

increase time
✓ increase time

batchInvest
✓ invest assets: sell senior for leveraged junior returns (7377ms)
✓ invest assets: sell all junior to partially cover senior (769ms)
✓ invest assets: sell some junior to cover senior (353ms)

increase time
✓ increase time

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 4: sell senior for leveraged junior returns (1256ms)
✓ deposit LP tokens mid-duration with signer 4: sell all junior to partially cover senior (734ms)
✓ deposit LP tokens mid-duration with signer 4: sell some junior to cover senior (742ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 5: sell senior for leveraged junior returns (741ms)
✓ deposit LP tokens mid-duration with signer 5: sell all junior to partially cover senior (744ms)
✓ deposit LP tokens mid-duration with signer 5: sell some junior to cover senior (738ms)

increase time
✓ increase time

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (265ms)
✓ harvest rewards: sell all junior to partially cover senior (258ms)
✓ harvest rewards: sell some junior to cover senior (267ms)

batchMidWithdraw
✓ withdraw LP mid-duration with signer 4: sell senior for leveraged junior returns (180ms)
✓ withdraw LP mid-duration with signer 4: sell all junior to partially cover senior (175ms)
✓ withdraw LP mid-duration with signer 4: sell some junior to cover senior (170ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 6: sell senior for leveraged junior returns (744ms)
✓ deposit LP tokens mid-duration with signer 6: sell all junior to partially cover senior (732ms)



✓ deposit LP tokens mid-duration with signer 6: sell some junior to cover senior (737ms)
batchHarvest

✓ harvest rewards: sell senior for leveraged junior returns (257ms)
✓ harvest rewards: sell all junior to partially cover senior (265ms)
✓ harvest rewards: sell some junior to cover senior (434ms)

increase time
✓ increase time

batchClaim
✓ claim tranche tokens: sell senior for leveraged junior returns (405ms)
✓ claim tranche tokens: sell all junior to partially cover senior (172ms)
✓ claim tranche tokens: sell some junior to cover senior (183ms)

redeem and withdrawal: sell senior for leveraged junior returns
✓ redeem LP after fee accrual (508ms)
✓ withdraw received amounts (554ms)

redeem and withdrawal: sell all junior to partially cover senior
✓ redeem LP after fee accrual (500ms)
✓ withdraw received amounts (536ms)

redeem and withdrawal: sell some junior to cover
✓ redeem LP after fee accrual (487ms)
✓ withdraw received amounts (572ms)

final sanity check
✓ pool totallp and totalshares is zero

works with sushi as token in pair being farmed
batchCreate

✓ create Vault: sell senior for leveraged junior returns (1082ms)
✓ create Vault: sell all junior to partially cover senior (985ms)
✓ create Vault: sell some junior to cover senior (1047ms)

batchDeposit
✓ deposit senior asset: sell senior for leveraged junior returns (2496ms)
✓ deposit junior asset: sell senior for leveraged junior returns (144ms)
✓ deposit senior asset: sell all junior to partially cover senior (107ms)
✓ deposit junior asset: sell all junior to partially cover senior (137ms)
✓ deposit senior asset: sell some junior to cover senior (106ms)
✓ deposit junior asset: sell some junior to cover senior (149ms)

increase time
✓ increase time

batchInvest
✓ invest assets: sell senior for leveraged junior returns (1032ms)
✓ invest assets: sell all junior to partially cover senior (324ms)
✓ invest assets: sell some junior to cover senior (326ms)

increase time
✓ increase time

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 4: sell senior for leveraged junior returns (732ms)
✓ deposit LP tokens mid-duration with signer 4: sell all junior to partially cover senior (724ms)
✓ deposit LP tokens mid-duration with signer 4: sell some junior to cover senior (734ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 5: sell senior for leveraged junior returns (723ms)
✓ deposit LP tokens mid-duration with signer 5: sell all junior to partially cover senior (734ms)
✓ deposit LP tokens mid-duration with signer 5: sell some junior to cover senior (732ms)

increase time
✓ increase time

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (228ms)
✓ harvest rewards: sell all junior to partially cover senior (483ms)
✓ harvest rewards: sell some junior to cover senior (406ms)

batchMidWithdraw
✓ withdraw LP mid-duration with signer 4: sell senior for leveraged junior returns (178ms)
✓ withdraw LP mid-duration with signer 4: sell all junior to partially cover senior (171ms)
✓ withdraw LP mid-duration with signer 4: sell some junior to cover senior (170ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 6: sell senior for leveraged junior returns (720ms)
✓ deposit LP tokens mid-duration with signer 6: sell all junior to partially cover senior (727ms)
✓ deposit LP tokens mid-duration with signer 6: sell some junior to cover senior (725ms)

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (236ms)
✓ harvest rewards: sell all junior to partially cover senior (226ms)
✓ harvest rewards: sell some junior to cover senior (229ms)

increase time
✓ increase time

batchClaim
✓ claim tranche tokens: sell senior for leveraged junior returns (175ms)
✓ claim tranche tokens: sell all junior to partially cover senior (166ms)
✓ claim tranche tokens: sell some junior to cover senior (189ms)

redeem and withdraw
✓ redeem LP after fee accrual (4314ms)

SushiStakingV2Strategy - Alchemix helper
alchemix vault lifecycle

✓ get assets (312ms)
✓ add pool (41ms)
✓ create vaults (2513ms)
✓ deposit assets and fast-forward (6346ms)
✓ invest ALCX/ETH vault (8542ms)
✓ invest ETH/ALCX vault (886ms)
✓ harvest (371ms)
✓ harvest (372ms)
✓ harvest (384ms)
✓ harvest (367ms)
✓ harvest (375ms)
✓ harvest (381ms)
✓ redeem ALCX/ETH vault (1600ms)
✓ redeem ETH/ALCX vault (214ms)

SushiStakingV2Strategy - WETH-ALCX helper
6) "before all" hook in "SushiStakingV2Strategy - WETH-ALCX helper"

SushiStakingV2Strategy - WETH-BIT multiple vaults
WETH-BIT - invest first vault
7) "before all" hook: Setup for "should allow registry strategist to create pool in the strategy"

SushiStakingV2Strategy - WETH-BIT rescue from all pair
WETH-BIT - deposit
8) "before all" hook: Setup for "should allow registry strategist to create pool in the strategy"

SushiStakingV2Strategy - WETH-BIT helper
9) "before all" hook in "SushiStakingV2Strategy - WETH-BIT helper"

SushiStakingV2Strategy - ETH-YGG-JR-LOSE-ALL helper
10) "before all" hook in "SushiStakingV2Strategy - ETH-YGG-JR-LOSE-ALL helper"

SushiStakingV2Strategy - ETH-YGG helper
11) "before all" hook in "SushiStakingV2Strategy - ETH-YGG helper"

TrancheToken
✓ spin up tranche tokens on Vault creation (1001ms)
✓ deposit base assets during Deposit phase (145ms)
✓ claim tokens only after investment (236ms)
✓ approve and transferFrom (38ms)

Uni
✓ test create mock (4547ms)
✓ test uniPull (650ms)

BondStrategy - USDC-BOND helper
12) "before all" hook in "BondStrategy - USDC-BOND helper"

BondStrategy - USDC-BOND helper
13) "before all" hook in "BondStrategy - USDC-BOND helper"

AllPairVault
delayed Vault

✓ setup vault fixture (541ms)
✓ create vault (1030ms)
✓ can only deposit after start time (1054ms)
✓ can get multiple vaults back from getVault (2899ms)
✓ deposits after start time (100ms)
✓ deposits exceed user cap
✓ deposits exceed tranche cap (159ms)
✓ can't deposit after investment

withdraw midterm LP deposit
✓ setup vault fixture (2253ms)
✓ create vault (2244ms)
✓ deposit senior asset (173ms)
✓ deposit junior asset (170ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (160ms)
✓ can't deposit or withdraw midterm unless tranche tokens are enabled
✓ deposit LP tokens mid-duration with signer 7 (460ms)
✓ withdraws as expected after depositing LP without claiming (322ms)
✓ withdraw received amounts (268ms)

sell senior for leveraged junior returns
✓ setup vault fixture (535ms)
✓ create vault (2080ms)
✓ deposit senior asset (171ms)
✓ deposit junior asset (171ms)
✓ deposits as expected
✓ cannot invest too early
✓ gets Vault by tranche token addresses
✓ gets all Vaults
✓ invest assets (152ms)
✓ claim tranche tokens and excess (256ms)
✓ withdraw LP mid-duration from original deposits (359ms)
✓ deposit LP tokens mid-duration with signer 6 (442ms)
✓ deposit LP tokens mid-duration with signer 7 (469ms)



✓ withdraw LP mid-duration with signer 6 (111ms)
✓ withdraw LP mid-duration with signer 7 (111ms)
✓ redeem LP after fee accrual (312ms)
✓ withdraw received amounts (423ms)

sell all junior to partially cover senior
✓ setup vault fixture (2588ms)
✓ create vault (1106ms)
✓ deposit senior asset (173ms)
✓ deposit junior asset (165ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (152ms)
✓ claim tranche tokens and excess (262ms)
✓ withdraw LP mid-duration from original deposits (359ms)
✓ deposit LP tokens mid-duration with signer 6 (437ms)
✓ deposit LP tokens mid-duration with signer 7 (470ms)
✓ withdraw LP mid-duration with signer 6 (108ms)
✓ withdraw LP mid-duration with signer 7 (108ms)
✓ redeem LP after fee accrual (282ms)
✓ withdraw received amounts (422ms)

sell some junior to cover senior
✓ setup vault fixture (3033ms)
✓ create vault (1201ms)
✓ deposit senior asset (173ms)
✓ deposit junior asset (175ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (154ms)
✓ claim tranche tokens and excess (258ms)
✓ withdraw LP mid-duration from original deposits (356ms)
✓ deposit LP tokens mid-duration with signer 6 (450ms)
✓ deposit LP tokens mid-duration with signer 7 (469ms)
✓ withdraw LP mid-duration with signer 6 (113ms)
✓ withdraw LP mid-duration with signer 7 (109ms)
✓ redeem LP after fee accrual (275ms)
✓ withdraw received amounts (427ms)

411 passing (8m)
13 failing

1) masterchefv2 dual incentive pool
mcv2 vault lifecycle
get LP from the sushiswap pool and deposit:

AssertionError: Expected "2" to be equal 1
at Context.<anonymous> (test/alchemix.spec.ts:273:38)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)

2) masterchefv2 dual incentive pool
mcv2 vault lifecycle

withdraw LP from ALCX/ETH vault:
AssertionError: Expected "2" to be equal 1
at Context.<anonymous> (test/alchemix.spec.ts:306:39)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)

3) masterchefv2 dual incentive pool
mcv2 vault lifecycle
deposit LP in ALCX/ETH vault:

AssertionError: Expected "2" to be equal 1
at Context.<anonymous> (test/alchemix.spec.ts:317:38)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)

4) EdenStrategy - WETH-EDEN helper
"before all" hook in "EdenStrategy - WETH-EDEN helper":

Error: call revert exception (method="decimals()", errorArgs=null, errorName=null, errorSignature=null, reason=null, code=CALL_EXCEPTION, version=abi/5.4.1)
at Logger.makeError (node_modules/@ethersproject/logger/src.ts/index.ts:225:28)
at Logger.throwError (node_modules/@ethersproject/logger/src.ts/index.ts:237:20)
at Interface.decodeFunctionResult (node_modules/@ethersproject/abi/src.ts/interface.ts:425:23)
at Contract.<anonymous> (node_modules/@ethersproject/contracts/src.ts/index.ts:332:44)
at step (node_modules/@ethersproject/contracts/lib/index.js:48:23)
at Object.next (node_modules/@ethersproject/contracts/lib/index.js:29:53)
at fulfilled (node_modules/@ethersproject/contracts/lib/index.js:20:58)

5) BondStrategy - USDC-BOND helper
USDC-BOND - deployment validation
USDC-BOND - vault lifecycle

USDC-BOND vault behaviour - invest
USDC-BOND vault behaviour - harvest and redeem
USDC-BOND mid term deposits
should allow investors to claim junior tranche tokens and excess:

AssertionError: expected undefined to equal 0
at Context.<anonymous> (test/behaviour/auniswap/vaultMidtermdeposits.ts:170:48)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)

6) SushiStakingV2Strategy - WETH-ALCX helper
"before all" hook in "SushiStakingV2Strategy - WETH-ALCX helper":

Error: VM Exception while processing transaction: reverted with reason string 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT'
at <UnrecognizedContract>.<unknown> (0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)

7) SushiStakingV2Strategy - WETH-BIT multiple vaults
WETH-BIT - invest first vault
"before all" hook: Setup for "should allow registry strategist to create pool in the strategy":

Error: Transaction reverted without a reason string
at <UnrecognizedContract>.<unknown> (0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)
at EthModule._sendTransactionAndReturnHash (node_modules/hardhat/src/internal/hardhat-network/provider/modules/eth.ts:1494:18)
at HardhatNetworkProvider.request (node_modules/hardhat/src/internal/hardhat-network/provider/provider.ts:108:18)
at EthersProviderWrapper.send (node_modules/@nomiclabs/hardhat-ethers/src/internal/ethers-provider-wrapper.ts:13:20)

8) SushiStakingV2Strategy - WETH-BIT rescue from all pair
WETH-BIT - deposit
"before all" hook: Setup for "should allow registry strategist to create pool in the strategy":

Error: Transaction reverted without a reason string
at <UnrecognizedContract>.<unknown> (0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)

9) SushiStakingV2Strategy - WETH-BIT helper
"before all" hook in "SushiStakingV2Strategy - WETH-BIT helper":

Error: Transaction reverted without a reason string
at <UnrecognizedContract>.<unknown> (0xd9e1ce17f2641f24ae83637ab66a2cca9c378b9f)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)

10) SushiStakingV2Strategy - ETH-YGG-JR-LOSE-ALL helper
"before all" hook in "SushiStakingV2Strategy - ETH-YGG-JR-LOSE-ALL helper":

Error: call revert exception (method="decimals()", errorArgs=null, errorName=null, errorSignature=null, reason=null, code=CALL_EXCEPTION, version=abi/5.4.1)
at Logger.makeError (node_modules/@ethersproject/logger/src.ts/index.ts:225:28)
at Logger.throwError (node_modules/@ethersproject/logger/src.ts/index.ts:237:20)
at Interface.decodeFunctionResult (node_modules/@ethersproject/abi/src.ts/interface.ts:425:23)
at Contract.<anonymous> (node_modules/@ethersproject/contracts/src.ts/index.ts:332:44)
at step (node_modules/@ethersproject/contracts/lib/index.js:48:23)
at Object.next (node_modules/@ethersproject/contracts/lib/index.js:29:53)
at fulfilled (node_modules/@ethersproject/contracts/lib/index.js:20:58)

11) SushiStakingV2Strategy - ETH-YGG helper
"before all" hook in "SushiStakingV2Strategy - ETH-YGG helper":

Error: call revert exception (method="decimals()", errorArgs=null, errorName=null, errorSignature=null, reason=null, code=CALL_EXCEPTION, version=abi/5.4.1)
at Logger.makeError (node_modules/@ethersproject/logger/src.ts/index.ts:225:28)
at Logger.throwError (node_modules/@ethersproject/logger/src.ts/index.ts:237:20)
at Interface.decodeFunctionResult (node_modules/@ethersproject/abi/src.ts/interface.ts:425:23)
at Contract.<anonymous> (node_modules/@ethersproject/contracts/src.ts/index.ts:332:44)



at step (node_modules/@ethersproject/contracts/lib/index.js:48:23)
at Object.next (node_modules/@ethersproject/contracts/lib/index.js:29:53)
at fulfilled (node_modules/@ethersproject/contracts/lib/index.js:20:58)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)

12) BondStrategy - USDC-BOND helper
"before all" hook in "BondStrategy - USDC-BOND helper":

Error: VM Exception while processing transaction: reverted with reason string 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT'
at <UnrecognizedContract>.<unknown> (0x7a250d5630b4cf539739df2c5dacb4c659f2488d)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)

13) BondStrategy - USDC-BOND helper
"before all" hook in "BondStrategy - USDC-BOND helper":

Error: VM Exception while processing transaction: reverted with reason string 'UniswapV2Router: EXCESSIVE_INPUT_AMOUNT'
at <UnrecognizedContract>.<unknown> (0x7a250d5630b4cf539739df2c5dacb4c659f2488d)
at runMicrotasks (<anonymous>)
at processTicksAndRejections (internal/process/task_queues.js:93:5)
at runNextTicks (internal/process/task_queues.js:62:3)
at listOnTimeout (internal/timers.js:523:9)
at processTimers (internal/timers.js:497:7)
at HardhatNode._mineBlockWithPendingTxs (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:1582:23)
at HardhatNode.mineBlock (node_modules/hardhat/src/internal/hardhat-network/provider/node.ts:435:16)

Code Coverage

Some tests are failing and thus it is not possible to reliably evaluate the code coverage at this stage.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 94.36 71.94 90.2 94.29

AllPairVault.sol 96.69 72.12 97.78 96.75 … 9,1170,1171

OndoRegistryClient.sol 100 100 100 100

OndoRegistryClientInitializable.sol 92.86 62.5 85.71 93.33 51

Registry.sol 64.29 50 66.67 65.52 … 147,148,160

RolloverVault.sol 96.68 80.3 100 96.7 … 681,686,735

SampleFeeCollector.sol 100 50 100 100

TrancheToken.sol 71.43 25 63.64 68.75 … 100,109,118

contracts/dao/ 0 0 0 0

GovernorBravoDelegate.sol 0 0 0 0 … 583,584,587

GovernorBravoDelegator.sol 0 0 0 0 … 66,67,81,83

GovernorBravoInterfaces.sol 100 100 100 100

SafeMath.sol 0 0 0 0 … 184,203,204

Timelock.sol 0 0 0 0 … 186,188,193

contracts/interfaces/ 100 100 100 100

IFeeCollector.sol 100 100 100 100

IPairVault.sol 100 100 100 100

IRegistry.sol 100 100 100 100

IRollover.sol 100 100 100 100

IStrategy.sol 100 100 100 100

ITrancheToken.sol 100 100 100 100

IUserTriggeredReward.sol 100 100 100 100

IWETH.sol 100 100 100 100

contracts/libraries/ 100 100 100 100

OndoLibrary.sol 100 100 100 100

contracts/strategies/ 67.37 43.95 67.12 67.79

ASushiswapStrategy.sol 0 0 0 0 … 445,446,447

AUniswapStrategy.sol 65.56 39.29 63.64 66.67 … 475,476,484

AlchemixLPStrategy.sol 95.39 56.52 100 95.45 … 473,505,506

BasePairLPStrategy.sol 77.78 50 100 78.95 85,86,87,88

BondStrategy.sol 100 77.78 100 100

DopexStrategy.sol 0 0 0 0 … 186,190,192

EdenStrategy.sol 21.28 25 12.5 21.28 … 179,184,186



File % Stmts % Branch % Funcs % Lines Uncovered Lines

SushiStakingV2Strategy.sol 65.57 41.89 69.57 66.19 … 816,817,818

SushiStrategyLP.sol 100 66.67 100 100

UniswapStrategy.sol 91.67 68.75 93.33 91.8 … 373,374,375

contracts/strategies/helpers/ 70 25 66.67 70

AlchemixUserReward.sol 70 25 66.67 70 30,31,32

contracts/test/ 40.38 100 36.84 40.38

ERC20Mock.sol 40 100 75 40 18,20,21

ForceSendEth.sol 100 100 100 100

Imports.sol 100 100 0 100

MockRewarder.sol 0 100 0 0 … 37,38,39,40

TestRewardHelper.sol 0 100 0 0 11,15,19,20

UniPull.sol 47.06 100 50 47.06 … 43,44,45,46

contracts/test/barnbridge/ 100 100 100 100

MockStaking.sol 100 100 100 100

contracts/tokens/ 74.16 54.17 82.35 74.86

Ondo.sol 58.95 47.73 76.19 60.42 … 292,295,379

StakingPools.sol 91.57 64.29 92.31 91.57 … 144,259,260

contracts/vendor/abdk/ 100 100 0 0

ABDKMathQuad.sol 100 100 0 0 … 2,1664,1677

contracts/vendor/alchemix/ 100 100 100 100

IStakingPools.sol 100 100 100 100

contracts/vendor/barnbridge/ 100 100 100 100

Staking.sol 100 100 100 100

YieldFarmLP.sol 100 100 100 100

contracts/vendor/dopex/ 100 100 100 100

IStakingRewards.sol 100 100 100 100

contracts/vendor/eden/ 100 100 100 100

IRewardsManager.sol 100 100 100 100

contracts/vendor/sushiswap/ 100 100 100 100

IMasterChef.sol 100 100 100 100

IMasterChefV2.sol 100 100 100 100

IRewarder.sol 100 100 100 100

ISushiBar.sol 100 100 100 100

contracts/vendor/uniswap/ 58.82 25 62.5 58.82

SushiSwapLibrary.sol 58.82 25 62.5 58.82 … 129,130,132

UniswapV2Library.sol 58.82 25 62.5 58.82 … 129,130,132

All files 67.71 43.21 60.35 67.26

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

b7fb3be8abcaf9350d8ff0f6cbfd2e54bceb306d7287c0eb61f388a33ea207d9 ./StakingPools.sol

d0acfa5eadf123ed7066569a6c9db9d76d97053458d0728af517e27319fd86bd ./Ondo.sol

262c395ddf87a2a478930445380bc533ac0857d6f4724c891767e17c0fef1b2f ./OndoLibrary.sol

01343f283af0ea51d215feefa79c5a59b5e4432f29a2e6907fba1adf2b404a4e ./TrancheToken.sol



6c263bde545659f48051814be385874dca90acc11a4bcdbfa18f2beba20e5ac0 ./SampleFeeCollector.sol

365c205a33be504ee56729d962fadffbdf7c5c82f9d7dfbc94ac68353441e1a7 ./RolloverVault.sol

491d582b501cae87b72f58c2f5b98ee7435d1308e1afcd4b386e306815578f82 ./Registry.sol

a4ce7c250d5ca36d16e03f16f659424a0434dfa1c6c7241e407fd1e1ccc702b8 ./AllPairVault.sol

176a90318116f4051fe0d543d20aa192502a8dbd783d7fe1cb865f94ee110909 ./OndoRegistryClientInitializable.sol

15e64cc312a3d7ebaa2cbd4ad30bf15f380616bbe80e2a92e32d99828f142c5c ./OndoRegistryClient.sol

fe9fad57c5ddee134040f86e9c5434e0c337a138fff20ead12b1806fece3dc75 ./AlchemixUserReward.sol

9def31e71e84f9b14ba45290bb3dd9d8293c29f6d893bae1c5ddede80b7d7081 ./UniswapStrategy.sol

e2921400d0d44176395bfafa878892af391badad3a12a927104c76e95bbffb8b ./SushiStrategyLP.sol

fc7153b62f538e370f8bc4eb0a5524cb6e76c05f1fb870da8e7d02708f2378b7 ./SushiStakingV2Strategy.sol

4ffa161e757a3a0374936d78d47b7ce4b202c9db43c7fdb726a6ad852dc20867 ./EdenStrategy.sol

f940caa491e39d43818e653064d89f2199bc194265d1fe2bf66032627af3cc0c ./DopexStrategy.sol

b28ed5920f4e4a05dab38f4385a607a7a2f33d5da10699fd9eedd23da7a42659 ./BondStrategy.sol

5f27f6caa1f4b8a5ddd9f4dde0810feed79467782128be117755c27b4c2f59c9 ./AlchemixLPStrategy.sol

6193076e3f6fb2cb878b68310710618f2123250ed77b5fe9d4cd86f4aa066ac6 ./BasePairLPStrategy.sol

5e4bfc31dbbf3a9e9cbef91a76a3aec6efa4a6ee89cce28cf1e49e63ce0011b4 ./AUniswapStrategy.sol

765410b533d5a99c57aea49ffbefb8eb698b16df66095513a06b46be0d966843 ./ASushiswapStrategy.sol

8e487d567f6814e03d5c7a7d5cd94afb9573ee10bf8b8cb38b4e1e4ceb0205c2 ./QuickSwapLibrary.sol

46489c93eff8908a663110b3d16da8e8e1681d69d0d786b1df2e8003ccce25a8 ./QuickswapStrategyLP.sol

4d7d9fe5b5918e64550ff7b991dca72f86dadc491ae5b76dbf210ee8c092f86b ./PancakeSwapLibrary.sol

6655f3a6f1563db0fd3c12e364eae9f7ffd22a7bbb9ea403875ff1f2dd8b6453 ./PancakeStrategyLP.sol

311019158d3c5fc17c24462df46332f7e93c82f391142b34b6b08758857a0113 ./PancakeStrategy.sol

1f9a1232376a48efaa33173bde866ba332d4034a556712e6243c41ab4bcd6888 ./contracts/RolloverVault.sol

15e64cc312a3d7ebaa2cbd4ad30bf15f380616bbe80e2a92e32d99828f142c5c ./contracts/OndoRegistryClient.sol

9c46b41bb23ad9def04afffaa1766fa143b4d4b5c0f011bad6356bfb58de88e5 ./contracts/Registry.sol

aa6972e837edea97fd06e1a81eef4e535c52cb54e0182b041b6fb32b9be63a9b ./contracts/AllPairVault.sol

e8026853efba0286ab7efadd01b4b4ff3947bf3e7f88cbc094ec91e5916d7088 ./contracts/TrancheToken.sol

b7fb3be8abcaf9350d8ff0f6cbfd2e54bceb306d7287c0eb61f388a33ea207d9 ./contracts/tokens/StakingPools.sol

d0acfa5eadf123ed7066569a6c9db9d76d97053458d0728af517e27319fd86bd ./contracts/tokens/Ondo.sol

262c395ddf87a2a478930445380bc533ac0857d6f4724c891767e17c0fef1b2f ./contracts/libraries/OndoLibrary.sol

5b5c45cd2d6ab0286484c21e05fb2f92f0d661cece1d7ee43cb9f9839f7331fa ./contracts/strategies/UniswapStrategy.sol

765410b533d5a99c57aea49ffbefb8eb698b16df66095513a06b46be0d966843 ./contracts/strategies/ASushiswapStrategy.sol

05cf5ab589cb58db1cbef3571d65a786c41959a8bc93aeb71142fac371eb1d55 ./contracts/strategies/BondStrategy.sol

098606fe8f5487482b21f7f00723117d60226d56c52c42f27b10bb9f5d1627f3 ./contracts/strategies/SushiStakingV2Strategy.sol

5e4bfc31dbbf3a9e9cbef91a76a3aec6efa4a6ee89cce28cf1e49e63ce0011b4 ./contracts/strategies/AUniswapStrategy.sol

8c278ef208d263d197a1d6c5bd58396e510d1b2065ee583c2a701411e6c8a43f ./contracts/strategies/DopexStrategy.sol

6193076e3f6fb2cb878b68310710618f2123250ed77b5fe9d4cd86f4aa066ac6 ./contracts/strategies/BasePairLPStrategy.sol

50a42214be23c799465893152ec6131eece3745fb95c8a446efb0d3dee2ed5e8 ./contracts/strategies/AlchemixLPStrategy.sol

7fd125893cfc7b2b5006fc114920ba9a71195e09fda6fb42c9888b22f6e42a93 ./contracts/strategies/SushiStrategyLP.sol

89d39c13b5c702cc841c126d4ddbad9c1564bc501ae73f61c0f2d922f7c33a2a ./contracts/strategies/EdenStrategy.sol

35c9982ba76ec7f3b8deba76861d3307a5774424a2373b20664d89f8217451ba ./contracts/strategies/helpers/AlchemixUserReward.sol

Tests

f53f15453e843ef9d70317f9e0b312615c3457bedb3d558fe949d82d8768f039 ./test/create2.spec.ts

2adb4b543786993b2cd6e07b2f8e56a480b7b4da4444271f8c1842c29b1e8f36 ./test/sushi2.spec.weth-ygg.ts

e79f5713e8f75fa048c4362c9a12c67bd66ae6b8e67227450dec4a3c4bd89605 ./test/staking.spec.ts

7700a794145cfd15235ee1743f8fc5c09e4a240b7ea73c7483a52f2e65a15810 ./test/reverts.spec.ts

8c2e9ca7ea47c012968dc72e4a856f9040ef410435d23a0d7db9c4a33ad4f3b7 ./test/sushi2.spec.weth-bit-rescue-from-allpair.ts

989e36c091ee53c818598103ffde2c979770f56ca36f5c0adaaaa3efe24b6d71 ./test/sushi2.spec.weth-ygg-jnrsLose.ts

0193a90e7c513149a5731bc6e5732df679e180a72d5f594216d59f004954ba0e ./test/sushi2.spec.weth-bit.ts

19681bfbafe32c7161ea18af32ba8cd8b948e8ab5df161d9e52bd6044a0cd42c ./test/uni.spec.usdt-bond-multivaults.ts

b0e250667999bf0bed33db084e6a001fd1e6e6b0df3eb38d4ad79537e76e689d ./test/uni.spec.usdt-bond-jrs-gain.ts

9ef67da498823f00c0a8a45b8042a6a5ab42455ea8ba3f5be462ffcbe5838124 ./test/fee.spec.ts

6e4a5170ee1dfb39ee6d0d0f081555034c300ef0209ad5552c9ef405ca687796 ./test/ondo.spec.ts

632ea85d33b6cf9f011e6e1ef462cb66c2c4965ae44ff082f5ade451ae1f1c0e ./test/uni.spec.ts

17afdb8ff44c2183959ead7d20be172a8e6c0a156a27b4445ad8855a4c36894b ./test/token.spec.ts

a1e740005618534bf1758c6cfe82ae0ff9f1845c9e83c510b880cf28d22fedf7 ./test/rollover.spec.ts

c4c1079f34f3c223e75f07296ec3f604aa612c0930a8c7adeda26c4b6589f095 ./test/uni.spec.usdt-bond.ts

d3c37dba547ba56afbac2045693ec627bfc84ace8b9aee69ffd7d284d3735936 ./test/sushi2.spec.weth-bit-multiple-vaults.ts

0194112e64af2b47636a5717a770d82de4bbca6ba6e23f263796b75258bf3c53 ./test/claim.spec.ts

ec87cdb2058a3cc3071a4546b55dea0b6b66372dd0414b01e4e606b484e035b1 ./test/vault.spec.ts



654a1bd43af19f69a41858629489e90a037ff9534dddc427d6c68eb9034b9df4 ./test/auni.spec.usdt-bond.ts

d8d0238f8f2a486e94b822c331e381d943736895bda6dae6ff88be1d9c6b47a8 ./test/asushi.spec.weth-eden.ts

d8502b60cea7501fdc780ae30f8a26da8cddf03cc00bbc1153c5d0c334cc375e ./test/registry.spec.ts

91e20259239d37e6cab96e800ac07781d612d95d7ec85964c09e6536e64a329b ./test/sushi2.spec.ts

78fb7c7d8a65242a1867edcf91796aae53530290c845712df8c03885c9c077e9 ./test/alchemix.spec.ts

9c93d37cabeab06ccdb89f72bab7e2c73ef28c261516966ae0c5c1bce8f13cd8 ./test/sushi-lp.spec.ts

438de978ff6d4cf5452eb6a68917d7a31a47b0ecfc238a0a8d56312a625f76c5 ./test/rescue.spec.ts

96ef1266ddbe8f0f67e1942d7e8c4946d3be230c6939467cb1a4b805f5c1eaa7 ./test/rollover.spec-forked.ts

96acb6f7f02998f39f382f5c42d67ecbc3ee467a8561561c1b946c5d59985711 ./test/sushi2.spec.weth-alcx.ts

a120f177affd17ce416947cc181ccd35457854e945122185fc811e7347a3c3a1 ./test/behaviour/vaultHarvestAndRedeemMultiVaultsSimple.ts

f2cead3facc2a0cdb0961a4e63cc177b12003cef76cd9f88db436b0b51d5bd01 ./test/behaviour/emergencyRescueToSigner.ts

adcea2615c31632bb9890e6b1ed19f8343a1c307aff1158e9d6ab47d7e2fcd1a ./test/behaviour/vaultMidtermdeposits.ts

28795da284d4b6bf636dee6d1e1b5897cf59f4818c21e37a580ebe29608015cc ./test/behaviour/vaultInvestmentLifecycle.ts

d38f5b63d71924e6962dfbd332813f4f093e8d0334809e27d5e9767afbcafe38 ./test/behaviour/vaultInvestmentSimple.ts

7c6b5a1962fedad466b312b4203b9588068806d7a88e4b233082a1edf6c96116 ./test/behaviour/vaultRollovers.ts

09cb79ef65922fa89a000e7dd641aaf5b91fd1df61599ffce3963926cbf3fbb9 ./test/behaviour/vaultLifecycle.ts

275d4088de32d9bcdd182ec3cee7c7ebaa0efdf5cdeb0e79d22a95befd69e4c9 ./test/behaviour/vaultInvestViaCallFunction.ts

f10abaa7b7a24e4f7c7f6ff76d93d4d03849a3e92a7d4201f4c8f58e0de7adca ./test/behaviour/emergencyRescueToStrategy.ts

9e459bf35587c33097c27e824f702d25c4b2d78af1f8ac2bfedfaaee8611496e ./test/behaviour/vaultHarvestAndRedeem.ts

945c6b3ee037a30b17c49fc3f9146934b9789916d3580a84a2735b897c91633b ./test/behaviour/auniswap/invest.ts

ce5b53b2d5b0e2910a9903c21e6fe9b30eb0464423d4ed6f5083089ff1da037e ./test/behaviour/auniswap/vaultMidtermdeposits.ts

b7ca16a52a8996ec35280135914c3488f0f9c6a78842f44581a40d0c3b5bf84d ./test/behaviour/auniswap/uniStrategySetup.ts

852d50384f83cdf9f93336c33933a8670d784421db7ed0e8ae0b16cdbd6b8d54 ./test/behaviour/auniswap/vaultLifecycle.ts

9bddd6fb998581bbe7214fdf61b72be384f6bfe566b915bd71ea13d4e1d73341 ./test/behaviour/auniswap/vaultInvestment.ts

b16d1ef54e0054ae8832e0661fb4c72d8723f2ac76b4b543377a2ce606a46bb9 ./test/behaviour/auniswap/emergencyRescueToStrategy.ts

5851859ffb174551f1144dcf50c5b74025242570018e01aabbde726bd585562c ./test/behaviour/auniswap/vaultHarvestAndRedeem.ts

945c6b3ee037a30b17c49fc3f9146934b9789916d3580a84a2735b897c91633b ./test/behaviour/asushiswap/invest.ts

c2860058dbb342749a7b8ee403a964fe6871837f4fd6fad67d59fa487b197230 ./test/behaviour/asushiswap/vaultMidtermdeposits.ts

91e9d6df5314e71d3aad744ccef76bcc3e9e7911a7ef24109f2c4f408e7bb54f ./test/behaviour/asushiswap/uniStrategySetup.ts

852d50384f83cdf9f93336c33933a8670d784421db7ed0e8ae0b16cdbd6b8d54 ./test/behaviour/asushiswap/vaultLifecycle.ts

9bddd6fb998581bbe7214fdf61b72be384f6bfe566b915bd71ea13d4e1d73341 ./test/behaviour/asushiswap/vaultInvestment.ts

55f8ad322bc1ad9b6146eac4a4fbbda73aa8e2ded5e73ef4a818ab8042634ace ./test/behaviour/asushiswap/emergencyRescueToStrategy.ts

5851859ffb174551f1144dcf50c5b74025242570018e01aabbde726bd585562c ./test/behaviour/asushiswap/vaultHarvestAndRedeem.ts

a7d7c451e51bd007c6a9956e2c01c16e4192a95af70684502f275f014604163b ./test/behaviour/uniswap/invest.ts

e507350f2d10504d6ddad65fb0b85cb4b06f78499b8ef49cd66edc27594982d3 ./test/behaviour/uniswap/vaultMidtermdeposits.ts

3d16c88e2dc51dd619ef42baab17bc323d35bdea6860036cc379ccd7f8142f82 ./test/behaviour/uniswap/vaultPathChangesRedeem.ts

4f37b82a75bc131d05c33ab387a883f0ffd004c6264f2c0e04820e9d3961f4e2 ./test/behaviour/uniswap/multivaultLifecycle.ts

3ece72a24adc556fdba395d2dbca705bfaa47585c74afc82c07d1928a4e13eaa ./test/behaviour/uniswap/uniStrategySetup.ts

2ac78115e9513a637c2efecfa06248a3d31b4f084ad68b26a5470ccd3390b1c2 ./test/behaviour/uniswap/vaultRedeem.ts

65432da3bd3b94a26ee8396205322706aa84c23c455e3fe8d1350923430d9fe2 ./test/behaviour/uniswap/vaultLifecycle.ts

85397c8642108c2fac2204994d4c3c3f2e6cba40d8247f7fa896852f949e42c4 ./test/behaviour/uniswap/vaultInvestment.ts

1a657fcdbafda3af377e3e82a13a554b8899f7f49153f8c109c6b9cc9fb0a084 ./test/behaviour/uniswap/emergencyRescueToStrategy.ts

295e2a0d7763e85150d6eaa8bcf1779b6e5b42e760b0c1f083ce02b105d85657 ./test/utils/DebugSigner.ts

5db8a0062c5cc308c9114d7bfd4de63a940a3c0cbd0ea278e218d6f56f3aa90b ./test/utils/addresses.ts

fa43c22f095ba4b2eb52dea637f35cf59bd86ef5599492e889f041e2c3237f56 ./test/utils/gen-utils.ts

9069b3f8a3a137776ea906d8b81b0a7a0cf9338231b7a4947d98d7648736bb54 ./test/utils/bignumberhax.ts

6f603be8959b57dd21f708ec298728c27ac43521e19461bedf9a12bb9ae25c0e ./test/utils/vault.ts

b14c977b9e56be27600fe7f0ec37a64bcc0f0f47e4251645a7844b4bc0b74da9 ./test/utils/rollover-forkednw.ts

66e8bc2c94fba576664f9b3835e7622f32c416aa20b619e1e6d6b78118992477 ./test/utils/uni.ts

c3d718f6909e8ed75a73b2c4c9416487197d84108a617fda9315afe60f3df5af ./test/utils/logger.ts

8cc6c09f8181c159c64257318bbe50cc3a3e0574fdfbeb07a65d12a82659bd28 ./test/utils/rollover.ts

d629e629864f5062bfa441b427ad696853b1b00e644eb632fc9cc93d4d8bdecf ./test/utils/getters.ts

95e0919c58dd3dd10cd81597a7a034888902e174046af6e66c269077ddad8810 ./test/utils/signing.ts

Changelog

2021-12-22 - Initial report•

2022-01-25 - Re-audit•



About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Ondo Finance 3 Audit


