
September 3rd 2021 — Quantstamp Verified

Ondo Finance V2

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Yield Aggregator Strategy

Auditors Leonardo Passos, Senior Research Engineer
Fayçal Lalidji, Security Auditor

Timeline 2021-08-23 through 2021-09-03

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification None

Documentation Quality Low

Test Quality Low

Source Code
Repository Commit

protocol-dev 610a629

Total Issues 15 (0 Resolved)

High Risk Issues 0 (0 Resolved)

Medium Risk Issues 4 (0 Resolved)

Low Risk Issues 6 (0 Resolved)

Informational Risk Issues 4 (0 Resolved)

Undetermined Risk Issues 1 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to
catastrophic impact for client’s
reputation or serious financial
implications for client and users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/ondoprotocol/protocol-dev/tree/610a6291951bb12b2cf9dbbd8ff31faeb2e22d11
https://github.com/ondoprotocol/protocol-dev/tree/610a6291951bb12b2cf9dbbd8ff31faeb2e22d11

Summary of Findings

Through reviewing the code, we found of various levels of severity. We recommend addressing the findings prior to deploying the smart contracts to the main network.16 potential issues

ID Description Severity Status

QSP-1 Mid-Term Lp Deposits Allow For Risk-Free Profits Medium Unresolved

QSP-2 Use of Magic Numbers Dependent on External Protocol Fees Medium Unresolved

QSP-3 Possible Truncation While Calculating Vault Deposits Shares Medium Unresolved

QSP-4 Possible Incorrect Path Reward Update Medium Unresolved

QSP-5 Privileged Roles and Ownership Low Unresolved

QSP-6 Potential Division by an Extremely Small Value Low Unresolved

QSP-7 Harvest Is Not Affected by Pausing Low Unresolved

QSP-8 Allows Circular PathsupdateRewardPath Low Unresolved

QSP-9 Mising ValidationisContract Low Unresolved

QSP-10 Lp Removal Does Not Validate Target Address Low Unresolved

QSP-11 Clone and Own (1) Informational Unresolved

QSP-12 Clone and Own (2) Informational Unresolved

QSP-13 Vault Shares Update Does Not Follow the Same Pattern Informational Unresolved

QSP-14 Possible Transaction Revert Due to Sandwich Attack Informational Unresolved

QSP-15 Incorrect Path Validation Logic Undetermined Unresolved

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.0• Slither

https://github.com/crytic/slither

Steps taken to run the tools:

Installed the Slither tool: Run Slither from the project directory:pip install slither-analyzer slither .

Findings

QSP-1 Mid-Term Lp Deposits Allow For Risk-Free Profits

Severity: Medium Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

An attacker can sandwich-attack every time is called by mid-term depositing LP tokens before the harvest (receiving tranche
tokens). The attacker proceeds to withdraw the tranche share tokens for an increased amount of LP tokens.
Description: SushiStakingV2Strategy.harvest(...)

1. Attacker observes a pending harvest function by the strategistExploit Scenario:

1. Attacker deposits LP tokens using . The latter invokes , which gets being resolved to
. The attacker receives tranche tokens representing a fair share of the current LP tokens of the strategy

AllPairVault.depositLp(...) Strategy.addLp(...)
SushiStakingV2Strategy.addLp(...)

2. Harvest happens, increasing the total LP tokens of the strategy

3. Attacker redeems their tranche tokens from step (2) by calling (calling) and receives more LP tokens than
initially due to the increase in (3).

AllPairVault.withdrawLp(...) Strategy.removeLp(...)

We recommend compounding the rewards before assigning the shares to a possible attacker.Recommendation:

QSP-2 Use of Magic Numbers Dependent on External Protocol Fees

Severity: Medium Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The constants used in the function depend on the fees charged by Uniswap and SushiSwap. Changes in fees by these protocols would lead to
incorrect calculations.
Description: calculateSwapInAmount()

Parameterize the contract s.t. one could make updates to the fee values as needed.Recommendation:

QSP-3 Possible Truncation While Calculating Vault Deposits Shares

Severity: Medium Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The implemented staking mechanism in is highly optimized and helps avoid any extra computation. However, setting the values of the initial shares for
a specific pool is important and should be analyzed carefully.
Description: SushiStakingV2Strategy

The algorithm is designed in a way to compute smaller shares every time that the LP rewards get higher, meaning that depositing the same LP tokens values for a specific vault will result in
giving different shares values (while the reward is accruing).
However, if the initial deposit is low enough and if the LP rewards are significantly greater than the initial LP deposit, new deposits to the vault will see their computed share being truncated.
In a worst-case scenario, if for any reason higher LP rewards can be introduced by an attacker, the next deposits will be truncated following the value of rewards introduced. The attacker will
profit by getting higher returns.

This issue can be solved by multiplying the initial amount by a constant multiplier in L496 and L498. The value of the multiplier should be determined
following the smallest possible investment, for example, if the smallest possible investment is 1 Wei, we would recommend a multiplier of .
Recommendation: depositIntoChef

10**18

QSP-4 Possible Incorrect Path Reward Update

Severity: Medium Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

requirement in seems incorrect since in the case if reward token and end token are similar the required length is set to be higher than 1, meaning that
resetting a path length equal to 1 is not allowed.
Description: updateRewardPath L282

The team should confirm if this behavior was intended since the requirement looks like it has to be changed to check if the length is equal to one when both reward and end
token are equal.
Recommendation:

QSP-5 Privileged Roles and Ownership

Severity: Low Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

Many operations in rely on a strategist role.Description: SushiStakingV2Strategy
A vault's strategist is responsible for correctly executing most of the vault and strategy actions and needs to be trusted.
Even when assuming full trust in strategists, would be at risk if strategists get compromised.SushiStakingV2Strategy

Document the trust assumptions for the strategist role and consider using a multi-sig defence.Recommendation:

https://github.com/ondoprotocol/protocol-dev/blob/610a6291951bb12b2cf9dbbd8ff31faeb2e22d11/contracts/strategies/SushiStakingV2Strategy.sol#L282

QSP-6 Potential Division by an Extremely Small Value

Severity: Low Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The calls before reaching the block in L497-500, in which the following calculation s performed:Description: SushiStakingV2Strategy.depositIntoChef(...) _compound()

uint256 shares = (_amount * poolData.totalShares) / poolData.totalLp

If is an extremely small value (for example, because of some dust generated from calling), this may lead to an extremely large value being stored in the
variable. A similar issue is present in .

poolData.totalLp _compound()
shares withdrawFromChef(...)

Consider writing several test cases in which these code blocks are reached to ensure intended behavior.Recommendation:

QSP-7 Harvest Is Not Affected by Pausing

Severity: Low Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

To allow reacting to a potential hack, it is always a good practice to allow pausing a contract. However, can still be called when the
contract is paused. Note that the latter calls , which is itself not affected by any pauses. Hence, one can invoke while the strategy is paused. That should not be
allowed, especially in the case of reacting to a hack.

Description: SushiStakingV2Strategy.harvest(...)
_compound harvest(...)

Add the modifier to .Recommendation: whenNotPaused SushiStakingV2Strategy.harvest(...)

QSP-8 Allows Circular PathsupdateRewardPath

Severity: Low Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The function allows paths with lengths greater than one, yet, with the reward and end token being the same (circular). It
is just wasteful to trade a token for itself.
Description: SushiStakingV2Strategy.updateRewardPath(...)

At the code level (L278--281), this appears as follows:

L278. require(
L279. rewardToken != endToken || _pathFromReward.length > 1, <===
L280. "Invalid path"
);

For to be evaluated, must be the same as , in which case the length is already greater than one. Otherwise, if
, the length should be exactly one, which is not the condition being checked.

_pathFromReward.length > 1 rewardToken endToken rewardToken ==
endToken

Change L278--281 to:Recommendation:

require(
rewardToken != endToken || _pathFromReward.length == 1,
"Invalid path"

);

QSP-9 Mising ValidationisContract

Severity: Low Risk

UnresolvedStatus:

,File(s) affected: AlchemixUserReward.sol SushiStakingV2Strategy.sol

The constructor of does not validate whether the input addresses are indeed contracts; same with
and . Hence, incorrect setups could lead the contract to misbehave.
Description: SushiStakingV2Strategy SushiStakingV2Strategy.addPool(...)

AlchemixUserReward.constructor(...)

As mitigation, add a check requiring that all provided addresses that should refer to a contract pass the check. Alternatively, make sure your
deployment scripts assert that the given addresses refer to the contract addresses expected by .
Recommendation: Address.isContract(...)

SushiStakingV2Strategy.constructor(...)

QSP-10 Lp Removal Does Not Validate Target Address

Severity: Low Risk

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The does not validate its argument. If , the removal essentially burn funds.Description: SushiStakingV2Strategy.removeLp(...) to address(0)

Add a statement to ensure the address is not .Recommendation: require to 0x0

QSP-11 Clone and Own (1)

Severity: Informational

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

Function appears to have been cloned from Alpha Homora and Zapper, but the inline code comment does not indicate the commit hash and file
from which it was taken. If buggy, faulty behavior may be permanently set in unless one is able to trace the code and corresponding fixes that might surface.
Description: calculateSwapInAmount(...)

Link the cloned code with its source so one can trace potential bugs and patches, periodically pulling the latter whenever available.Recommendation:

QSP-12 Clone and Own (2)

Severity: Informational

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

Contract shares a lot of commonality with , but duplicated code appears in both contracts. Not only this adds extra
maintenance, but also can lead to incorrect bug fixing if fixes are done in one strategy, but not the other.
Description: SushiStakingV2Strategy SushiStrategyLP

Refactor duplicated code in and in a base contract that gets inherited by both.Recommendation: SushiStakingV2Strategy SushiStrategyLP

QSP-13 Vault Shares Update Does Not Follow the Same Pattern

Severity: Informational

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

does not accumulate the vault shares but rewrites them, using the input value. This scheme is not used any of the other functions that update the shares.
Even if can be called only once, developers should be careful with future contract updates.
Description: depositIntoChef()

depositIntoChef

We recommend to accumulates its value rather than resetting it.Recommendation:

QSP-14 Possible Transaction Revert Due to Sandwich Attack

Severity: Informational

UnresolvedStatus:

Not including the minimum out values and setting its value to zero when executing an external call to Sushiswap might result in a failing transaction due to bots not recognizing that
a transaction may fail later on. This issue depends on how the attack bots are implemented.
Description:

QSP-15 Incorrect Path Validation Logic

Severity: Undetermined

UnresolvedStatus:

File(s) affected: SushiStakingV2Strategy.sol

The array should have two paths. It seems one path should end in and the other in (or vice-versa). However, the implementation in
, both paths could end in or . It is unclear if the latter situation is indeed desired; our understanding is that the first case

should be allowed.

Description: rewardPaths token0 token1
SushiStakingV2Strategy.addPool(...) token0 token1 only

Clarify this issue with better documentation in the code. If the current implementation is incorrect, then require that both paths have distinct ends, one ending in and
the other in .
Recommendation: token0

token1

Automated Analyses

Slither

Slither did not report any significant issues.

Adherence to Best Practices

In , make sure to add descriptive messages for the require statements. For exaample,
could be restated as .

• SushiStakingV2Strategy.sol require(_router != address(0), "Invalid
address") require(_router != address(0), "Invalid router address")

make use of magic constants whose purpose is unclear to readers. Please provide supporting documentation.• SushiStakingV2Strategy.sol

Unused storage variable . Consider removing it.• SushiStakingV2Strategy.xSushi

Unused function . Consider removing it.• SushiStakingV2Strategy.getSushiPath(...)

Message in at L245 is misleading, as it could be the case that both the first element in the first and second paths are sushi. In the
latter case, although the first path would be sushi, the error message would report the contrary.

• SushiStakingV2Strategy.sol

Function is too large. Consider refactoring it.• SushiStakingV2Strategy._compound(...)

It seems does not need to be marked , as it does not contain any external calls.• SushiStakingV2Strategy.updateRewardPath(...) nonReentrant

Test Results

Test Suite Results

npx hardhat test
Creating Typechain artifacts in directory typechain for target ethers-v5
Successfully generated Typechain artifacts!

masterchefv2 dual incentive pool
mcv2 vault lifecycle

✓ get assets (17270ms)
✓ create vaults (2589ms)
✓ deposit assets and fast-forward (9608ms)
✓ invest ALCX/ETH vault (39481ms)
✓ invest ETH/ALCX vault (8186ms)
✓ harvest (322ms)
✓ harvest (392ms)
✓ harvest (395ms)
✓ harvest (254ms)
✓ harvest (370ms)
✓ harvest (315ms)
✓ redeem ALCX/ETH vault (3159ms)
✓ redeem ETH/ALCX vault (659ms)

Claim
✓ Create vault (2652ms)
✓ Get some DAI
✓ Deposit on both sides (11363ms)
✓ Move to invest state (4894ms)
✓ Try to claim DAI
✓ Try to claim ETH
✓ Redeem funds (2593ms)
✓ Withdraw all funds (74ms)

Create2
✓ create Vault (1800ms)

Performance fees
delayed Vault

✓ setup vault fixture (3577ms)
✓ create vault (1394ms)
✓ can only deposit after start time (1345ms)
✓ setup fee collector and performance fee
✓ deposits after start time (77ms)
✓ invest and redeem (194ms)

Ondo
metadata

✓ has a name
✓ has a symbol

balanceOf
✓ grants to initial account

delegateBySig
✓ reverts if the signatory is invalid (528ms)
✓ reverts if the nonce is bad
✓ reverts if the signature has expired
✓ delegates on behalf of the signatory

numCheckpoints
✓ returns the number of checkpoints for a delegate (80ms)

Ondo transfer disabled
✓ transfer reverts when transfers are disabled
✓ account with transfer role can transfer
✓ transferAllowed works correctly

Registry
✓ grant roles
✓ register contracts

Rescue functions
pause and rescue asset and LP tokens

✓ doesn't allow rescuing tokens outside of pause mode
✓ pauses and freezes Vault functions (74ms)
✓ rescue tokens (57ms)
✓ stops the pause and restores functionality

test reverts
✓ reverts (1723ms)

RolloverVault
basic rollover

✓ create rollover (2640ms)
✓ create rollover from existing Vault (3795ms)
✓ deposit senior asset (157ms)
✓ deposit exceeds senior user cap (50ms)
✓ deposit junior asset (180ms)
✓ adds another Vault to rollover tip (1304ms)
✓ migrate (182ms)
✓ single deposit (54ms)
✓ deposit senior asset (184ms)
✓ deposit exceeds senior user cap (47ms)
✓ deposit junior asset (186ms)
✓ adds another Vault to rollover tip (1245ms)
✓ migrate (299ms)
✓ deposit senior asset (155ms)
✓ deposit exceeds senior user cap (44ms)
✓ deposit junior asset (159ms)
✓ adds another Vault to rollover tip (1326ms)
✓ migrate (278ms)
✓ single deposit (51ms)
✓ deposit senior asset (227ms)
✓ deposit exceeds senior user cap (59ms)
✓ deposit junior asset (178ms)
✓ adds another Vault to rollover tip (1532ms)
✓ migrate (306ms)
✓ deposit senior asset (253ms)
✓ deposit exceeds senior user cap (50ms)
✓ deposit junior asset (163ms)
✓ adds another Vault to rollover tip (1298ms)
✓ migrate (283ms)
✓ doesn't send additional excess on deposit after claiming
✓ withdraw (94ms)
✓ deposit senior asset (177ms)
✓ deposit exceeds senior user cap (42ms)
✓ deposit junior asset (161ms)
✓ adds another Vault to rollover tip (1330ms)
✓ migrate (296ms)

StakingPools
✓ should set correct state variables (523ms)
✓ should allow emergency withdraw (197ms)
✓ should give out ondos only after farming time (1093ms)
✓ should not distribute ONDOs if no one deposit (602ms)
✓ should distribute ondos properly for each staker (1302ms)
✓ should give proper ONDOs allocation to each pool (835ms)
✓ should stop giving bonus ONDOs after the bonus period ends (1079ms)
✓ should track minimumOndoRequiredBalance properly (903ms)

SushiStrategyLP
✓ pool add and update reverts (18253ms)
batchCreate

✓ create Vault: sell senior for leveraged junior returns (1255ms)
✓ create Vault: sell all junior to partially cover senior (1297ms)
✓ create Vault: sell some junior to cover senior (1371ms)

batchDeposit
✓ deposit senior asset: sell senior for leveraged junior returns (92ms)
✓ deposit junior asset: sell senior for leveraged junior returns (87ms)
✓ deposit senior asset: sell all junior to partially cover senior (90ms)
✓ deposit junior asset: sell all junior to partially cover senior (87ms)
✓ deposit senior asset: sell some junior to cover senior (88ms)
✓ deposit junior asset: sell some junior to cover senior (88ms)

increase time
✓ increase time

batchInvest
✓ invest assets: sell senior for leveraged junior returns (6703ms)
✓ invest assets: sell all junior to partially cover senior (1192ms)
✓ invest assets: sell some junior to cover senior (229ms)

increase time
✓ increase time

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 4: sell senior for leveraged junior returns (1199ms)
✓ deposit LP tokens mid-duration with signer 4: sell all junior to partially cover senior (548ms)
✓ deposit LP tokens mid-duration with signer 4: sell some junior to cover senior (525ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 5: sell senior for leveraged junior returns (517ms)
✓ deposit LP tokens mid-duration with signer 5: sell all junior to partially cover senior (522ms)

✓ deposit LP tokens mid-duration with signer 5: sell some junior to cover senior (526ms)
increase time

✓ increase time
batchHarvest

✓ harvest rewards: sell senior for leveraged junior returns (166ms)
✓ harvest rewards: sell all junior to partially cover senior (368ms)
✓ harvest rewards: sell some junior to cover senior (167ms)

batchMidWithdraw
✓ withdraw LP mid-duration with signer 4: sell senior for leveraged junior returns (109ms)
✓ withdraw LP mid-duration with signer 4: sell all junior to partially cover senior (101ms)
✓ withdraw LP mid-duration with signer 4: sell some junior to cover senior (112ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 6: sell senior for leveraged junior returns (528ms)
✓ deposit LP tokens mid-duration with signer 6: sell all junior to partially cover senior (528ms)
✓ deposit LP tokens mid-duration with signer 6: sell some junior to cover senior (510ms)

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (161ms)
✓ harvest rewards: sell all junior to partially cover senior (170ms)
✓ harvest rewards: sell some junior to cover senior (165ms)

increase time
✓ increase time

batchClaim
✓ claim tranche tokens: sell senior for leveraged junior returns (148ms)
✓ claim tranche tokens: sell all junior to partially cover senior (144ms)
✓ claim tranche tokens: sell some junior to cover senior (88ms)

redeem and withdrawal: sell senior for leveraged junior returns
✓ redeem LP after fee accrual (329ms)
✓ withdraw received amounts (291ms)

redeem and withdrawal: sell all junior to partially cover senior
✓ redeem LP after fee accrual (311ms)
✓ withdraw received amounts (281ms)

redeem and withdrawal: sell some junior to cover
✓ redeem LP after fee accrual (473ms)
✓ withdraw received amounts (302ms)

final sanity check
✓ pool totallp and totalshares is zero

works with sushi as token in pair being farmed
batchCreate

✓ create Vault: sell senior for leveraged junior returns (1244ms)
✓ create Vault: sell all junior to partially cover senior (1321ms)
✓ create Vault: sell some junior to cover senior (1134ms)

batchDeposit
✓ deposit senior asset: sell senior for leveraged junior returns (4697ms)
✓ deposit junior asset: sell senior for leveraged junior returns (90ms)
✓ deposit senior asset: sell all junior to partially cover senior (60ms)
✓ deposit junior asset: sell all junior to partially cover senior (94ms)
✓ deposit senior asset: sell some junior to cover senior (62ms)
✓ deposit junior asset: sell some junior to cover senior (89ms)

increase time
✓ increase time

batchInvest
✓ invest assets: sell senior for leveraged junior returns (1488ms)
✓ invest assets: sell all junior to partially cover senior (215ms)
✓ invest assets: sell some junior to cover senior (338ms)

increase time
✓ increase time

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 4: sell senior for leveraged junior returns (535ms)
✓ deposit LP tokens mid-duration with signer 4: sell all junior to partially cover senior (497ms)
✓ deposit LP tokens mid-duration with signer 4: sell some junior to cover senior (497ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 5: sell senior for leveraged junior returns (504ms)
✓ deposit LP tokens mid-duration with signer 5: sell all junior to partially cover senior (536ms)
✓ deposit LP tokens mid-duration with signer 5: sell some junior to cover senior (521ms)

increase time
✓ increase time

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (246ms)
✓ harvest rewards: sell all junior to partially cover senior (235ms)
✓ harvest rewards: sell some junior to cover senior (143ms)

batchMidWithdraw
✓ withdraw LP mid-duration with signer 4: sell senior for leveraged junior returns (111ms)
✓ withdraw LP mid-duration with signer 4: sell all junior to partially cover senior (114ms)
✓ withdraw LP mid-duration with signer 4: sell some junior to cover senior (100ms)

batchMidDeposit
✓ deposit LP tokens mid-duration with signer 6: sell senior for leveraged junior returns (522ms)
✓ deposit LP tokens mid-duration with signer 6: sell all junior to partially cover senior (500ms)
✓ deposit LP tokens mid-duration with signer 6: sell some junior to cover senior (498ms)

batchHarvest
✓ harvest rewards: sell senior for leveraged junior returns (143ms)
✓ harvest rewards: sell all junior to partially cover senior (138ms)
✓ harvest rewards: sell some junior to cover senior (141ms)

increase time
✓ increase time

batchClaim
✓ claim tranche tokens: sell senior for leveraged junior returns (85ms)
✓ claim tranche tokens: sell all junior to partially cover senior (81ms)
✓ claim tranche tokens: sell some junior to cover senior (91ms)

redeem and withdraw
✓ redeem LP after fee accrual (3694ms)

alchemix
alchemix vault lifecycle

✓ get assets (239ms)
✓ add pool
✓ create vaults (2969ms)
✓ deposit assets and fast-forward (10059ms)
✓ invest ALCX/ETH vault (9733ms)
✓ invest ETH/ALCX vault (1122ms)
✓ harvest (242ms)
✓ harvest (357ms)
✓ harvest (428ms)
✓ harvest (413ms)
✓ harvest (398ms)
✓ harvest (379ms)
✓ redeem ALCX/ETH vault (2398ms)
✓ redeem ETH/ALCX vault (573ms)

TrancheToken
✓ spin up tranche tokens on Vault creation (1381ms)
✓ deposit base assets during Deposit phase (109ms)
✓ claim tokens only after investment (141ms)
✓ approve and transferFrom

Uni
✓ test create mock (5161ms)
✓ test uniPull (484ms)

AllPairVault
delayed Vault

✓ setup vault fixture (419ms)
✓ create vault (1496ms)
✓ can only deposit after start time (1281ms)
✓ can get multiple vaults back from getVault (4207ms)
✓ deposits after start time (63ms)
✓ deposits exceed user cap
✓ deposits exceed tranche cap (103ms)
✓ can't deposit after investment

withdraw midterm LP deposit
✓ setup vault fixture (2361ms)
✓ create vault (1647ms)
✓ deposit senior asset (115ms)
✓ deposit junior asset (122ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (87ms)
✓ can't deposit or withdraw midterm unless tranche tokens are enabled
✓ deposit LP tokens mid-duration with signer 7 (330ms)
✓ withdraws as expected after depositing LP without claiming (188ms)
✓ withdraw received amounts (149ms)

sell senior for leveraged junior returns
✓ setup vault fixture (3994ms)
✓ create vault (1380ms)
✓ deposit senior asset (136ms)
✓ deposit junior asset (126ms)
✓ deposits as expected
✓ cannot invest too early
✓ gets Vault by tranche token addresses
✓ gets all Vaults
✓ invest assets (97ms)
✓ claim tranche tokens and excess (150ms)
✓ withdraw LP mid-duration from original deposits (217ms)
✓ deposit LP tokens mid-duration with signer 6 (379ms)
✓ deposit LP tokens mid-duration with signer 7 (361ms)
✓ withdraw LP mid-duration with signer 6 (73ms)
✓ withdraw LP mid-duration with signer 7 (70ms)
✓ redeem LP after fee accrual (220ms)

✓ withdraw received amounts (235ms)
sell all junior to partially cover senior

✓ setup vault fixture (3943ms)
✓ create vault (1732ms)
✓ deposit senior asset (129ms)
✓ deposit junior asset (123ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (87ms)
✓ claim tranche tokens and excess (137ms)
✓ withdraw LP mid-duration from original deposits (198ms)
✓ deposit LP tokens mid-duration with signer 6 (347ms)
✓ deposit LP tokens mid-duration with signer 7 (345ms)
✓ withdraw LP mid-duration with signer 6 (69ms)
✓ withdraw LP mid-duration with signer 7 (68ms)
✓ redeem LP after fee accrual (189ms)
✓ withdraw received amounts (228ms)

sell some junior to cover senior
✓ setup vault fixture (3465ms)
✓ create vault (1376ms)
✓ deposit senior asset (122ms)
✓ deposit junior asset (121ms)
✓ deposits as expected
✓ cannot invest too early
✓ invest assets (89ms)
✓ claim tranche tokens and excess (135ms)
✓ withdraw LP mid-duration from original deposits (208ms)
✓ deposit LP tokens mid-duration with signer 6 (335ms)
✓ deposit LP tokens mid-duration with signer 7 (349ms)
✓ withdraw LP mid-duration with signer 6 (65ms)
✓ withdraw LP mid-duration with signer 7 (66ms)
✓ redeem LP after fee accrual (204ms)
✓ withdraw received amounts (228ms)

259 passing (6m)

Code Coverage

Quantstamp usually recommends developers to increase the branch coverage to and above before a project goes live, in order to avoid hidden functional bugs that

might not be easy to spot during the development phase. For code coverage, the current targeted files by the audit achieve poor scores that must be improved before live

deployment.

90%

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 85.71 63.78 85.05 86.32

AllPairVault.sol 97.45 72.55 97.87 97.5 … 1,1064,1112

OndoRegistryClient.sol 100 100 100 100

OndoRegistryClientInitializable.sol 85.71 62.5 71.43 86.67 47,51

Registry.sol 64.29 50 66.67 65.52 … 147,148,160

RolloverVault.sol 74.9 55.88 81.48 76.35 … 823,828,880

SampleFeeCollector.sol 100 50 100 100

TrancheToken.sol 71.43 25 63.64 68.75 … 101,110,119

contracts/dao/ 0 0 0 0

GovernorBravoDelegate.sol 0 0 0 0 … 583,584,587

GovernorBravoDelegator.sol 0 0 0 0 … 66,67,81,83

GovernorBravoInterfaces.sol 100 100 100 100

SafeMath.sol 0 0 0 0 … 184,203,204

Timelock.sol 0 0 0 0 … 186,188,193

contracts/interfaces/ 100 100 100 100

IBasicVault.sol 100 100 100 100

IFeeCollector.sol 100 100 100 100

IPairVault.sol 100 100 100 100

IRegistry.sol 100 100 100 100

IRollover.sol 100 100 100 100

IStrategy.sol 100 100 100 100

ITrancheToken.sol 100 100 100 100

IUserTriggeredReward.sol 100 100 100 100

IWETH.sol 100 100 100 100

contracts/libraries/ 100 100 100 100

OndoLibrary.sol 100 100 100 100

contracts/strategies/ 80.72 54.55 86.08 81.14

AlchemixLPStrategy.sol 73.03 54.35 75 73.38 … 441,473,474

BasePairLPStrategy.sol 77.78 50 100 78.95 85,86,87,88

SushiStakingV2Strategy.sol 66.05 42.11 69.57 66.67 … 784,785,791

File % Stmts % Branch % Funcs % Lines Uncovered Lines

SushiStrategyLP.sol 100 66.67 100 100

UniswapStrategy.sol 100 78.57 100 100

contracts/strategies/helpers/ 63.64 25 50 63.64

AlchemixUserReward.sol 63.64 25 50 63.64 30,31,32,42

contracts/test/ 40.38 100 36.84 40.38

ERC20Mock.sol 40 100 75 40 18,20,21

ForceSendEth.sol 100 100 100 100

IRewarder.sol 100 100 100 100

Imports.sol 100 100 0 100

MockRewarder.sol 0 100 0 0 … 37,38,39,40

TestRewardHelper.sol 0 100 0 0 11,15,19,20

UniPull.sol 47.06 100 50 47.06 … 44,45,46,47

contracts/tokens/ 74.86 54.05 83.33 75.68

Ondo.sol 61 47.83 78.26 62.75 … 309,312,396

StakingPools.sol 91.57 64.29 92.31 91.57 … 144,259,260

contracts/vendor/abdk/ 100 100 0 0

ABDKMathQuad.sol 100 100 0 0 … 2,1664,1677

contracts/vendor/alchemix/ 100 100 100 100

IStakingPools.sol 100 100 100 100

contracts/vendor/sushiswap/ 100 100 100 100

IMasterChef.sol 100 100 100 100

IMasterChefV2.sol 100 100 100 100

ISushiBar.sol 100 100 100 100

contracts/vendor/uniswap/ 58.82 25 62.5 58.82

SushiSwapLibrary.sol 58.82 25 62.5 58.82 … 129,130,132

UniswapV2Library.sol 58.82 25 62.5 58.82 … 129,130,132

All files 70.12 43.84 62.31 69.69

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

6a7f22d2234be1614b349c6eb1a5793f25209ebb12cffff9954685ee810d7c0b ./strategies/SushiStakingV2Strategy.sol

e98aa22663acea84b9930927eb4d5d043afdaba7ee0db2bfb93e4249f37a9040 ./strategies/helpers/AlchemixUserReward.sol

Tests

908edcc0cb080e925404af48107fa5607cf377a86691c1d69930d845c2ed3064 ./test/registry.spec.ts

567a9c7e1b3987bc44df301dfe8e47c4e9c0da6417c9b9fbe41084fc202a65fb ./test/alchemix.spec.ts

731ec323616913c12b4d4a053d966f1a9c7b3694346cf1cffbc4a914a6a2b214 ./test/staking.spec.ts

7f32b85cd16273b127afdffe45c6f7cbcfa74961af421a37aeaa79a9a68b8909 ./test/sushi2.spec.ts

641794a46f5826bd3f75e17ba1e88d705bb35c168cb59d94fd912b2bb04b7f84 ./test/ondo.spec.ts

55884a6ce789c9e7eb49d014ad5b61cb82c9342587cb8785a5e0a1ad179f17bd ./test/sushi-lp.spec.ts

898f83e353c4d0408e138b8058bab776d9ea90ef2a1fc6bc4456ed6573d2497a ./test/claim.spec.ts

4d4cced62f58bb967fdb051981cf30042e2feb4cbb5f036dd6d2bfdf0e5f3aaa ./test/token.spec.ts

632ea85d33b6cf9f011e6e1ef462cb66c2c4965ae44ff082f5ade451ae1f1c0e ./test/uni.spec.ts

ffededa76363b9e27cd3a5e1feb028fd676b2f9c0b9d668c5a3fd505691cc5df ./test/reverts.spec.ts

5d0def6f1d8d660ea6f3a968da264c422d4e9e5a1e84032f95cdb4129f21d757 ./test/rollover.spec.ts

12d8149fdc16ef1d733fb68edee18e01b1cdfe742e514208256effb1434319b3 ./test/vault.spec.ts

967a06267b1ed917e6976c4d0511034cc98218b77f5e6f047e896763c90c6dca ./test/fee.spec.ts

f53f15453e843ef9d70317f9e0b312615c3457bedb3d558fe949d82d8768f039 ./test/create2.spec.ts

d4166571a3d52d03dec09a09bc16e9bac304f5e820da1800530a1b7e86f1f084 ./test/rescue.spec.ts

3555c740183d0ca7153eb1ac8f27e1ceb4110e7062a49a5a1b2bc57052abc961 ./test/utils/bignumberhax.ts

295e2a0d7763e85150d6eaa8bcf1779b6e5b42e760b0c1f083ce02b105d85657 ./test/utils/DebugSigner.ts

ab65a2857c1fb33dc00d7181aac429709391d1c8e0bbc484756d14889011a696 ./test/utils/vault.ts

66e8bc2c94fba576664f9b3835e7622f32c416aa20b619e1e6d6b78118992477 ./test/utils/uni.ts

5db8a0062c5cc308c9114d7bfd4de63a940a3c0cbd0ea278e218d6f56f3aa90b ./test/utils/addresses.ts

95e0919c58dd3dd10cd81597a7a034888902e174046af6e66c269077ddad8810 ./test/utils/signing.ts

d629e629864f5062bfa441b427ad696853b1b00e644eb632fc9cc93d4d8bdecf ./test/utils/getters.ts

Changelog

2021-09-03 - Initial report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Ondo Finance V2 Audit

