
Ondo: GM Solana
Security Review

Cantina Managed review by:

J4X, Lead Security Researcher

Mario Poneder, Security Researcher

N4nika, Security Researcher

December 18, 2025

Contents

1 Introduction 2
1.1 About Cantina . 2
1.2 Disclaimer . 2
1.3 Risk assessment . 2

1.3.1 Severity Classification . 2

2 Security Review Summary 3
2.1 Scope . 3

3 Findings 5
3.1 Critical Risk . 5

3.1.1 Infinite mint/redeem possible through signature manipulation 5
3.2 High Risk . 6

3.2.1 Privilege escalation via lamport transfer to role PDA in whitelist operations 6
3.2.2 Unchecked confidence value allows for usage of non trustworthy oracle prices . . 7
3.2.3 Too low MIN_PRICE will lead to Ondo incurring significant losses in case of a USDC

depeg . 8
3.2.4 Incorrect rounding direction in mint_with_attestation 8

3.3 Medium Risk . 9
3.3.1 Attestation/Token creation process can be blocked . 9
3.3.2 initialize_user allows for rate limit bypass . 10
3.3.3 Admin is not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER_ROLE_GMTOKEN

role . 11
3.3.4 Value of action will be rounded down leading to bypass of limit 11
3.3.5 Attestations can't be closed in edge case . 11
3.3.6 GM token pauser can also pause USDon due to shared mint authority and Pausable

extension . 12
3.3.7 USDon UI multiplier can be modified by GM token UPDATE_MULTIPLIER_ROLE . . . 12
3.3.8 set_ondo_user_rate_limit uses wrong default window 13

3.4 Low Risk . 14
3.4.1 Creation of attestation PDA will not account for lamport balance 14
3.4.2 Attestation can be closed 30 seconds past creation . 14
3.4.3 Attestations can be reused by closing and recreating attestation PDAs before expiration 14
3.4.4 Admin can't overwrite non-zero limit_window . 16
3.4.5 Restriction on multisig usage as the upgrade authority 16
3.4.6 GM token minter bypasses token-level mint limits . 17
3.4.7 USDon token minter/burner bypasses token-level mint limits 18
3.4.8 Non ATA usdc_vault / usdon_vault will lead to all swaps reverting 18
3.4.9 swap_usdon_to_usdc() allows for 0 value swap . 19
3.4.10 Missing oracle-based swap pricing logic, swaps are always 1:1 despite

oracle_price_enabled . 19
3.4.11 Pyth oracle sanity check ignores price exponent . 20
3.4.12 Attestation signer address is not validated . 20
3.4.13 Minting/Redeeming can not be used with non-ATA token accounts 21
3.4.14 USDC accounts don't verify correct token program . 21
3.4.15 oracle_price_max_age not checked against MAX_AGE_UPPER_BOUND on initializa-

tion . 22
3.4.16 usdc_price_update could be zero . 22
3.4.17 Zero usdon_mint can be intialized . 23
3.4.18 USDC mint constraint is commented out in UsdcSwapContext 23
3.4.19 GM token admin mint cannot target PDA recipients . 24
3.4.20 Incorrect mint used in swap_usdc_to_usdon . 24
3.4.21 Missing mint capabilities for AdminMintRoleGmtokenManager 24
3.4.22 USDon guardian cannot remove roles after giving them 25
3.4.23 Several defined roles are unused in the Solana program 25
3.4.24 Defined but unused error codes indicate missing or incomplete validations 26
3.4.25 init_usdon_roles misses RoleGranted event . 27
3.4.26 Sanity checker can be initialized with zero last_price 27
3.4.27 mint is missing token program check . 27

1

3.4.28 Users will loose up to 999 lamports of USDon on each USDC redemption 28
3.4.29 Type conversion can lead to unexpected behavior . 29
3.4.30 Signature verification has more restrictions than intended 29

3.5 Informational . 31
3.5.1 Role initializing/closing is dependent on mutability of program 31
3.5.2 Tokens with transfer-allowed == false can still be transferred 31
3.5.3 Misleading is_paused parameter name for enable_oracle_price 31
3.5.4 Incorrect documentation of PauseGmToken . 32
3.5.5 Incorrect documentation of MAX_SECONDS_EXPIRATION 32
3.5.6 Incorrect documentation of GmTokenManagerAdminGlobalPauser 33
3.5.7 trading_hours_offset missing in initialize_gmtoken_manager comment . . 33
3.5.8 Metadata update authority set to program PDA but no update path implemented . . 33
3.5.9 Unnecessary role checks for AdminRoleGmtokenManager 34
3.5.10 Incorrect comment in sanity checker . 34
3.5.11 Incorrect event emission in set_token_limit . 34
3.5.12 Incorrect documentation of mint_usdon and burn_usdon 35
3.5.13 Missing access control documentation on initialize_usdon_manager function . . 35
3.5.14 Incorrect role comments for sanity checker in lib.rs 36
3.5.15 rate_limit_check should use PRICE_SCALING_FACTOR 36
3.5.16 closer unnecessarily mutable in CloseAttestationAccount 36

2

1 Introduction

1.1 About Cantina

Cantina is a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity level Impact: High Impact: Medium Impact: Low

Likelihood: high Critical High Medium

Likelihood: medium High Medium Low

Likelihood: low Medium Low Low

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High
findings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be
fixed as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings are a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not impact
the project’s overall security (Gas and Informational findings).

3

https://cantina.xyz

2 Security Review Summary

Ondo's mission is to make institutional-grade financial products and services available to everyone.

From Nov 20th to Dec 2nd the Cantina team conducted a review of gm-solana on commit hash 3f96676f.
The team identified a total of 59 issues:

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 1 1 0

High Risk 4 4 0

Medium Risk 8 8 0

Low Risk 30 30 0

Gas Optimizations 0 0 0

Informational 16 15 1

Total 59 58 1

2.1 Scope

The security review had the following components in scope for gm-solana on commit hash 3f96676f:

programs/ondo-gm

├── Cargo.toml

├── proptest-regressions

│ └── instructions

│ └── token_manager.txt

├── src

│ ├── constants.rs

│ ├── errors.rs

│ ├── events.rs

│ ├── instructions

│ │ ├── close_attestation_account.rs

│ │ ├── gm_token_admin_operations.rs

│ │ ├── gm_token_factory_admin_operations.rs

│ │ ├── gm_token_manager_admin_operations.rs

│ │ ├── initialize_user.rs

│ │ ├── mod.rs

│ │ ├── role_operations.rs

│ │ ├── sanity_checker_admin_operations.rs

│ │ ├── token_factory.rs

│ │ ├── token_limit_admin_operations.rs

│ │ ├── token_manager.rs

│ │ ├── update_scaled_ui_multiplier.rs

│ │ ├── usdc_swap_context.rs

│ │ ├── usdon_admin_operations.rs

│ │ ├── usdon_manager_admin_operations.rs

│ │ ├── usdon_swap_context.rs

│ │ └── whitelist_operations.rs

│ ├── lib.rs

│ ├── state

│ │ ├── attestation.rs

│ │ ├── gmtoken_manager_state.rs

│ │ ├── mod.rs

│ │ ├── ondo_user.rs

│ │ ├── roles.rs

│ │ ├── sanity_check.rs

│ │ ├── token_limit.rs

│ │ ├── usdon_manager_state.rs

4

https://github.com/ondoprotocol/gm-solana
https://github.com/ondoprotocol/gm-solana/tree/3f96676f8c3f8c267a4cd51bc7dd95e7c64e1857/
https://github.com/ondoprotocol/gm-solana
https://github.com/ondoprotocol/gm-solana/tree/3f96676f8c3f8c267a4cd51bc7dd95e7c64e1857/

│ │ └── whitelist.rs

│ └── utils

│ ├── capacity.rs

│ ├── decimals.rs

│ ├── mod.rs

│ └── mul_div.rs

└── Xargo.toml

5

3 Findings

3.1 Critical Risk

3.1.1 Infinite mint/redeem possible through signature manipulation

Severity: Critical Risk

Context: token_manager.rs#L250-L300

Description: The ondo protocol uses attestations to ensure that no unrestricted minting is possible. With
each call to “.

The table below is taken from the official solana_secp256k1_program documentation

Index Bytes Type Description

0 2 u16 signature_offset — offset to 64-byte signature plus 1-byte recovery ID.

2 1 u8 signature_offset_instruction_index —within the transaction, the index
of the transaction whose instruction data contains the signature.

3 2 u16 eth_address_offset — offset to 20-byte Ethereum address.

5 1 u8 eth_address_instruction_index —within the transaction, the index of the
instruction whose instruction data contains the Ethereum address.

6 2 u16 message_data_offset — offset to start of message data.

8 2 u16 message_data_size — size of message data in bytes.

10 1 u8 message_instruction_index —within the transaction, the index of the in-
struction whose instruction data contains the message data.

In this table, we can see that each part of the struct also has a corresponding instruction_index .
However, looking at the code below, we can see that these are ignored during parsing and never checked
afterward.

// Parse offsets (all u16 are little-endian):

let sig_off = u16::from_le_bytes([data[rd], data[rd + 1]]) as usize;

let eth_off = u16::from_le_bytes([data[rd + 3], data[rd + 4]]) as usize;

let msg_off = u16::from_le_bytes([data[rd + 6], data[rd + 7]]) as usize;

let msg_len = u16::from_le_bytes([data[rd + 8], data[rd + 9]]) as usize;

msg!(

" Sig offset: {}, ETH offset: {}, Message offset: {}, length: {}",

sig_off,

eth_off,

msg_off,

msg_len

);

require!(msg_len == 32, SecpError::WrongDigestLen);

require!(msg_off + msg_len <= data.len(), SecpError::MalformedSecpIx);

require!(eth_off + 20 <= data.len(), SecpError::MalformedSecpIx);

As a result, the secp instruction could contain the intended digest. However, the actual verification
performed by the secp256k1_program was based on data from a prior instruction. This prior instruction
can be an instruction to a user-controlled program that contains a digest, a valid signature of the digest by
the attacker, and the attacker's eth address at the same offsets as in the secp256k1_program . This way,
both would pass, and the program would mint, while no actual signing happened at all.

Proof of Concept: An exemplary attack could look like this. The user creates a custom program that
accepts any input. He structures a batch of instructions as follows:

IX-Index program ix content

6

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L250-L300
https://docs.rs/solana-secp256k1-program/latest/solana_secp256k1_program/

0 usersCustomProgram acceptAllInputIx 1: Signature of
randomMessage32Bytes by
attackerEthAddress . 2:
attackerEthAddress . 3: ran-
domMessage32Bytes. The parts
need to be spaced according to the
offsets specified in the table above

1 secp256k1_program secp256k1 This will contain a header with some
variable offsets, and for each of the
parts, the instruction_index will
point to IX0. In the instructions data,
the correct digest and eth pubkey of
ondo must be placed at the correct
offsets, the signature can be any value
as it will never be checked

2 ondo-gm mint_with_attestation This will pass as secp256k1 passed
and contained the correct digest and
eth address within its ix data

By using this bundled IX, the attacker can mint/redeem as often as they want without any attestations.

Recommendation: We recommend ensuring that the instruction indexes equal the instruction cur-
rently being checked.

Ondo Finance: Fixed in commit 12e4d3c1. We'll only support ”inline” mode, the secp256k1 instruction
must reference itself and must contain all calldata. There must be at least one instruction containing a
valid signature for the message digest calculated in the program, and the recovered ETH address must
match what's stored in state.

Cantina Managed: Fix verified.

3.2 High Risk

3.2.1 Privilege escalation via lamport transfer to role PDA in whitelist operations

Severity: High Risk

Context: whitelist_operations.rs#L12-L62, whitelist_operations.rs#L69-L116

Description: The AddToWhitelist and RemoveFromWhitelist instructions in
whitelist_operations.rs use UncheckedAccount for role validation, allowing privilege esca-
lation by sending SOL to a precomputed PDA address. Implementation details:

#[account(

seeds = [RoleType::ADMIN_ROLE_WHITELIST, admin.key().as_ref()],

bump

)]

pub role_account: UncheckedAccount<'info>,

// In function:

require_gt!(self.role_account.lamports(), 0, ErrorCode::ConstraintAddress);

Anchor's UncheckedAccount with seeds only validates the address, not ownership or data. Furthermore,
the code only checks lamports, not whether it's a valid Roles account. Attack path and impact:

1. Attacker precomputes their role PDA address:

findProgramAddressSync([b"AdminRoleWhitelist", attacker.key()], programId)

2. Attacker sends SOL to that address (simple transfer, no account creation needed).

3. Attacker has now gained ADMIN_ROLE_WHITELIST privileges.

7

https://github.com/ondoprotocol/gm-solana/commit/12e4d3c1492a28a1cc2022d68d0c3695a3f61bf5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/whitelist_operations.rs#L12-L62
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/whitelist_operations.rs#L69-L116

This results in full control over the mint/redeem operations by whitelisting malicious/sanctioned addresses
or removing genuine addresses from the whitelist at will, effectively bypassing compliance controls and
user rate limiting, as well as blocking users from swapping.

Furthermore, the attacker can steal rent by closing Whitelist accounts, which is 0.12 USD at the current
price, i.e. 120k USD per million whitelisted users.

Recommendation: It is recommended to change role_account from UncheckedAccount to
Account<Roles> , e.g.:

/// The Roles account verifying the admin has ADMIN_ROLE_WHITELIST

/// # PDA Seeds

/// - ADMIN_ROLE_WHITELIST

/// - Admin's address

#[account(

seeds = [RoleType::ADMIN_ROLE_WHITELIST, admin.key().as_ref()],

bump,

)]

pub roles: Account<'info, Roles>, // Changed from UncheckedAccount

Ondo Finance: Fixed in commit f4620ef0.

Cantina Managed: Fix verified.

3.2.2 Unchecked confidence value allows for usage of non trustworthy oracle prices

Severity: High Risk

Context: token_manager.rs#L718-L738

Description: The protocol uses the Pyth oracle to ensure that no USDC depeg above 10% has happened
when minting USDon for USDC.

let usdc_price = match usdc_price_update_info.key() {

USDC_PYTH_ORACLE_ADDRESS => {

// Fetch the feed ID for the USDC token price from its hex representation.

let usdc_feed_id: [u8; 32] = get_feed_id_from_hex(USDC_PYTH_ID)?;

// Deserialize `usdc_price_update_info` account data into PriceUpdateV2 struct

let data = usdc_price_update_info.try_borrow_data()?;

let usdc_price_update_data = PriceUpdateV2::try_deserialize(&mut &data[..])?;

// Retrieve current USDC/USD price from Pyth oracle with freshness validation

// This ensures we're using recent price data to prevent stale price attacks

usdc_price_update_data

.get_price_no_older_than(

&Clock::get()?,

self.usdon_manager_state.oracle_price_max_age,

&usdc_feed_id,

)?

.price

}

_ => return err!(OndoError::UsdcOracleNotImplemented),

};

// Validate that USDC price is above minimum threshold

require_gte!(usdc_price, MIN_PRICE, OndoError::UsdcBelowMinimumPrice);

The get_price_no_older_than() function will return a Price struct.

/// A Pyth price.

/// The actual price is `(price ± conf)* 10^exponent`. `publish_time` may be used to

check the recency of the price.↪→

#[derive(PartialEq, Debug, Clone, Copy)]

pub struct Price {

pub price: i64,

pub conf: u64,

8

https://github.com/ondoprotocol/gm-solana/commit/f4620ef03cc4f4dda62d6c5692e6e7ffb52611b2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L718-L738

pub exponent: i32,

pub publish_time: i64,

}

In this struct the conf value means how far the confidence interval out of all the reported prices ranges.
If this value is high it indicates a non clear price. As a result this price should not be trusted if the value
passes a chosen threshold.

This could lead to a non trustworthy price being used to still mint USDon while USDc might have deppeged
significantly more severely.

Recommendation: We recommend checking the confidence value to be less than a value fitting the
intended risk profile (5% is recommended in some tutorials).

Ondo Finance: Fixed in commit aeeb2f1e.

Cantina Managed: Fix verified.

3.2.3 Too low MIN_PRICE will lead to Ondo incurring significant losses in case of a USDC depeg

Severity: High Risk

Context: (No context files were provided by the reviewer)

Description: The protocol implements safeguards to protect itself against a potential USDC depeg. Before
interactions using USDC, the current Pyth price of USDC is fetched and checked to ensure it is not lower
than MIN_PRICE .

// Validate that USDC price is above minimum threshold

require_gte!(usdc_price, MIN_PRICE, OndoError::UsdcBelowMinimumPrice);

MIN_PRICE is currently set to 90c.

/// Minimum price threshold for USDC (in scaled units)

pub const MIN_PRICE: i64 = 90_000_000;

However, as a result, this will allow people to mint tokens for a potentially undercollateralized depegged
USDC token until its price has crashed by 10%, which will take time. Especially for a high liquidity token like
USDC, this price dump will take even longer.

As a result, this very low MIN_PRICE will allow for minting of USDon/GM for depegged USDC at a 1:1 ratio
for a far longer than needed time.

Recommendation: We recommend setting MIN_PRICE significantly closer to 1 USD to ensure early
pausing in the event of a depeg.

Ondo Finance: Fixed in commit c021a80e.

Cantina Managed: Fix verified.

3.2.4 Incorrect rounding direction in mint_with_attestation

Severity: High Risk

Context: (No context files were provided by the reviewer)

Description: In mint_with_attestation , the amount the user has to pay is calculated based on price

and amount . This calculation incorrectly rounds down, causing the user to pay less than he needs to. The
affected operations are the mul_div in the function's true case:

let amount_sent = mul_div(price, amount, PRICE_SCALING_FACTOR as u64)?;

as well as both mul_div and normalize_decimals in the false case:

let normalized_amount =

normalize_decimals(amount, ctx.mint.decimals, usdc_mint_decimals)?;

9

https://github.com/ondoprotocol/gm-solana/commit/aeeb2f1e0f6879d7f558a1cfba4fb33d4b261528
https://github.com/ondoprotocol/gm-solana/commit/c021a80e32bb98bb2d7a1bba340db3ee5768e603

// Calculate the amount of USDC to be sent based on the price

let amount_sent = mul_div(price, normalized_amount, PRICE_SCALING_FACTOR as u64)?;

The impact is very miniscule in the true case (but still incorrect and needs to be fixed). In the false case,
however, especially the rounding of normalize_decimals can be exploited in edge cases.

The highest impact can be achieved when a user buys a very small amount of a very expensive stock.
Looking at the ondo dashboard, the most expensive stock is MELIon at a price of approximately
2000 USD / share . Assuming any stocks may be added to ondo in the future, however, a very ex-
pensive example would be BRK-A at a price of approximately 760000 USD / share .

Breaking down the calculation of amount_sent yields the following:

normalized_amount = amount / (10**3)

amount_sent = (price * normalized_amount) / 1e9

Taking the following values showcases the worst case senario:

• amount = 1999 .

• price = 760000 * 1e9 .

This yields the following results:

• With rounding:

normalized_amount = 1999 / 10**3 = 1.999 => 1

amount_sent = (760000*1e9 * 1) / 1e9 = 760000 = 0.76 USD

• Without rounding:

normalized_amount = 1999 / 10**3 = 1.999

amount_sent = (760000*1e9 * 1.999) / 1e9 = 1519240 = 1.51924 USD

As we can see, rounding down when normalizing the amount can lead to up to a 50% loss in the worst
case.

Summarized, the rounding can lead to the loss of 1 millionth of a share. With very highly priced shares
this can become quite significant. It's important to note though, that the permissioned nature of the
protocol (requiring attestations to mint) greatly reduces the exploitability.

Recommendation: Consider rounding up instead of down in the mentioned cases.

Specifically, in the true case, the mul_div should round up. In the false case, however it would make
sense to first calculate the amount_sent and only afterwards normalize the decimals and round up
there. This would minimize rounding errors since the mul_div after normalize_decimals increases
the inaccuracy.

This is because the operations are currently: divide, multiply, divide and division before multipli-
cation is advised against.

Reordering the operations would yield: multiply, divide, divide .

Ondo Finance: Fixed in commit 3b071a32.

Cantina Managed: Fix verified.

3.3 Medium Risk

3.3.1 Attestation/Token creation process can be blocked

Severity: Medium Risk

Context: token_manager.rs#L77-L84

Description: Both the init_mint_internal as well as the initialize_attestation_account use
the create_account() function. Below, one can see the implementation of create_account() in the
Solana program:

10

https://github.com/ondoprotocol/gm-solana/commit/3b071a32b30f12abb306d16bddd1107400b3b957
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L77-L84
https://github.com/solana-labs/solana/blob/7700cb3128c1f19820de67b81aa45d18f73d2ac0/programs/system/src/system_processor.rs#L145

fn create_account(

from_account_index: IndexOfAccount,

to_account_index: IndexOfAccount,

to_address: &Address,

lamports: u64,

space: u64,

owner: &Pubkey,

signers: &HashSet<Pubkey>,

invoke_context: &InvokeContext,

transaction_context: &TransactionContext,

instruction_context: &InstructionContext,

) -> Result<(), InstructionError> {

// if it looks like the `to` account is already in use, bail

{

let mut to = instruction_context

.try_borrow_instruction_account(transaction_context, to_account_index)?;

if to.get_lamports() > 0 {

ic_msg!(

invoke_context,

"Create Account: account {:?} already in use",

to_address

);

return Err(SystemError::AccountAlreadyInUse.into());

}

Since this will return an error if the account holds any lamports, an attacker can precompute the attesta-
tion/mint PDA's address and send the minimum amount of lamports needed for an empty account to it.
This is about 0.001 sol or about 12c at the current price. As a result, all calls to create these will revert.

Recommendation: We recommend using allocate , transfer , and assign manually to prevent this.

Ondo Finance: Fixed in commit 96c2c9ba.

Cantina Managed: Fix verified.

3.3.2 initialize_user allows for rate limit bypass

Severity: Medium Risk

Context: initialize_user.rs#L45-L46

Description: When a user tries to mint/redeem tokens the initialize_ondo_user will be called and
set the default limits for the user.

#[inline(always)]

pub fn initialize_ondo_user(&mut self, bump: u8) -> Result<()> {

if self.ondo_user.owner != self.user.key() {

self.ondo_user.owner = self.user.key();

self.ondo_user.mint = self.mint.key();

self.ondo_user.rate_limit = self.token_limit_account.default_user_rate_limit;

self.ondo_user.limit_window = self.token_limit_account.default_user_limit_window;

self.ondo_user.mint_capacity_used = Some(0);

self.ondo_user.mint_last_updated = None;

self.ondo_user.redeem_capacity_used = Some(0);

self.ondo_user.redeem_last_updated = None;

self.ondo_user.bump = bump;

msg!("User initialized");

}

Ok(())

}

So if the owner was already set, no limits will be set. This leads to an issue as anyone can create a user
account and set the owner using initialize_user . This instruction also allows the user to set his limits
to the max and not have any limits at all.

11

https://github.com/ondoprotocol/gm-solana/commit/96c2c9ba3520cf6fd4d7d35463f315b6758fd016
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/initialize_user.rs#L45-L46

Recommendation: We recommend restricting the initialize_user ix to admins, or instead of allowing
custom rate limits use the defaults.

Ondo Finance: Fixed in commit d4244f49.

Cantina Managed: Fix verified.

3.3.3 Admin is not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER_ROLE_GMTOKEN role

Severity: Medium Risk

Context: gm_token_admin_operations.rs#L68-L71

Description: The ADMIN_ROLE_GMTOKEN should be able to grant the roles MINTER_ROLE_GMTOKEN ,
PAUSER_ROLE_GMTOKEN , and UNPAUSER_ROLE_GMTOKEN through the add_gmtoken_role function.

require!(

matches!(role, RoleType::MinterRoleGmtoken),

OndoError::InvalidRoleType

);

However due to the check seen above, the admin can only grant one of the three.

Recommendation: We recommend also allowing for the granting of the PAUSER_ROLE_GMTOKEN and
UNPAUSER_ROLE_GMTOKEN role.

Ondo Finance: Fixed in commit 0de40882.

Cantina Managed: Fix verified.

3.3.4 Value of action will be rounded down leading to bypass of limit

Severity: Medium Risk

Context: token_manager.rs#L375

Description: To calculate the USD value of a mint/redeem, the rate_limit_check function calculates
(price * tokenAmount) / priceScale .

fn rate_limit_check(

&mut self,

price: u64,

token_amount: u64,

current_timestamp: i64,

is_buy: bool,

) -> Result<()> {

let amount = mul_div(price, token_amount, GM_TOKEN_SCALING_FACTOR)?;

However as this uses div it will round down by up to one USD per interaction. As a result mints/redeems
with a value below 1USD will not affect the limits at all and all others will be rounded down, leading to
more minting being possible than actually intended.

Recommendation: We recommend rounding up in the calculation.

Ondo Finance: Fixed in commit 3b071a32.

Cantina Managed: Fix verified.

3.3.5 Attestations can't be closed in edge case

Severity: Medium Risk

Context: (No context files were provided by the reviewer)

Description: The protocol implements two mechanisms to close attestation accounts.

#[account(

mut,

address = attestation.creator

12

https://github.com/ondoprotocol/gm-solana/commit/d4244f49306269eba85b61729c2f82ea5985fc49
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L68-L71
https://github.com/ondoprotocol/gm-solana/commit/0de408826f08edcaf9ba85a61100dacbc74effd5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L375
https://github.com/ondoprotocol/gm-solana/commit/3b071a32b30f12abb306d16bddd1107400b3b957

)]

pub recipient: SystemAccount<'info>,

However, both of these require the attestation.creator to be a system account. This leads to issues
if a PDA without data created an attestation. In that case, the attestation can be created; however, it can't
be closed, as all calls to the close functions will revert. This will cause the rent funds to get stuck.

Recommendation: We recommend setting the recipient to an unchecked account.

Ondo Finance: Fixed in commit 60aad84c.

Cantina Managed: Fix verified.

3.3.6 GM tokenpauser can also pauseUSDondue to sharedmint authority and Pausable extension

Severity: Medium Risk

Context: gm_token_admin_operations.rs#L254-L293, gm_token_admin_operations.rs#L327-L366

Description: The PauseGmToken instruction is intended to pause GM tokenmints, but its constraints allow
it to pause any Token-2022 mint whose authority is the shared MINT_AUTHORITY_SEED PDA. Therefore,
a holder of PAUSER_ROLE_GMTOKEN can call pause_token with mint = usdon_mint and successfully
pause USDon as well. This contradicts the intended role-based access control separation.

Recommendation: It is recommended to restrict PauseGmToken (and the corresponding
ResumeGmToken) to exclude the USDon mint explicitly, for example by adding a constraint tying
in USDonManagerState :

#[account(

mut,

mint::authority = mint_authority,

mint::token_program = token_program,

constraint = mint.key() != usdon_manager_state.usdon_mint @

OndoError::InvalidInputMint,↪→

)]

pub mint: InterfaceAccount<'info, Mint>;

#[account(

seeds = [USDON_MANAGER_STATE_SEED],

bump = usdon_manager_state.bump,

)]

pub usdon_manager_state: Account<'info, USDonManagerState>;

Ondo Finance: Fixed in commit 6494c563.

Cantina Managed: Fix verified.

3.3.7 USDon UI multiplier can be modified by GM token UPDATE_MULTIPLIER_ROLE

Severity: Medium Risk

Context: update_scaled_ui_multiplier.rs#L12-L45

Description: The UpdateScaledUiMultiplier instruction is intended to adjust the ScaledUiAmount

multiplier for GM tokens, but its constraints allow the same role to change theUImultiplier for USDon aswell,
because USDon and GM tokens share the same MINT_AUTHORITY_SEED PDA as mint authority. Therefore,
any holder of UpdateMultiplierRole can call update_scaled_ui_multiplier on the USDon mint.

Implications:

• The displayed value of USDon in wallets, dashboards, and internal tools that respect the
ScaledUiAmount multiplier can be arbitrarily skewed, even though the raw on-chain balances
don't change. This can:

– Confuse users and operators about actual USDon amounts.

– Make balances appear larger/smaller in some UIs, impacting perceived solvency or P&L.

13

https://github.com/ondoprotocol/gm-solana/commit/60aad84cb8f3dbb3c223eb203171b6c7ff36ae11
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L254-L293
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L327-L366
https://github.com/ondoprotocol/gm-solana/commit/6494c563caa805150babb14b7f523f7dd06efdc9
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/update_scaled_ui_multiplier.rs#L12-L45

– Complicate off-chain accounting and reconciliation if some systems use scaled amounts and
others use raw base units.

• It contradicts the spec which positions UpdateMultiplierRole as a GM-token-only concern.

Recommendation: It is recommended to restrict UpdateScaledUiMultiplier so it cannot target the
USDon mint, for example by adding a constraint and state account:

#[account(

mut,

mint::authority = mint_authority,

mint::token_program = token_program,

constraint = mint.key() != usdon_manager_state.usdon_mint @

OndoError::InvalidInputMint,↪→

)]

pub mint: InterfaceAccount<'info, Mint>;

#[account(

seeds = [USDON_MANAGER_STATE_SEED],

bump = usdon_manager_state.bump,

)]

pub usdon_manager_state: Account<'info, USDonManagerState>;

Ondo Finance: Fixed in commit 6494c563.

Cantina Managed: Fix verified.

3.3.8 set_ondo_user_rate_limit uses wrong default window

Severity: Medium Risk

Context: (No context files were provided by the reviewer)

Description: When the set_ondo_user_rate_limit function is called, and no limit window is set for
the user, the DEFAULT_LIMIT_WINDOW constant is used.

pub fn set_ondo_user_rate_limit(&mut self, rate_limit: u64) -> Result<()> {

// Set the rate_limit field

self.ondo_user.rate_limit = Some(rate_limit);

// If limit_window is not set or is zero, use default 3600 seconds (1 hour)

if self.ondo_user.limit_window.is_none() || self.ondo_user.limit_window == Some(0) {

self.ondo_user.limit_window = Some(DEFAULT_LIMIT_WINDOW);

}

However, this is potentially the wrong value, as for each gmtoken, a default_user_limit_window can
be defined in its TokenLimit account.

// Default user limit window for this token

pub default_user_limit_window: Option<u64>,

Recommendation: We recommend adapting the code as follows:

// If limit_window is not set or is zero, use default 3600 seconds (1 hour)

if self.ondo_user.limit_window.is_none() || self.ondo_user.limit_window == Some(0) {

if token_limit.default_user_limit_window.is_none(){

self.ondo_user.limit_window = Some(DEFAULT_LIMIT_WINDOW);

} else {

self.ondo_user.limit_window = token_limit.default_user_limit_window;

}

}

Ondo Finance: Fixed in commit ebca5863.

Cantina Managed: Fix verified.

14

https://github.com/ondoprotocol/gm-solana/commit/6494c563caa805150babb14b7f523f7dd06efdc9
https://github.com/ondoprotocol/gm-solana/commit/ebca586395bd9219b5fcca805fadf6509033e41d

3.4 Low Risk

3.4.1 Creation of attestation PDA will not account for lamport balance

Severity: Low Risk

Context: token_manager.rs#L80

Description: When creating an attestation PDA, the program will transfer the minimum balance needed
for the account.

// Create the instruction to create the attestation account

let ix = system_instruction::create_account(

&self.user.key(),

&self.attestation_id_account.key(),

Rent::get()?.minimum_balance(space),

space as u64,

&crate::ID,

);

However this doesn't account for the account potentially already holding lamports. As a result the account
might actually hold more lamports than needed.

Recommendation: We recommend only transferring enough lamports so that the minimum balance is
achieved.

Ondo Finance: Fixed in commit 96c2c9ba.

Cantina Managed: Fix verified.

3.4.2 Attestation can be closed 30 seconds past creation

Severity: Low Risk

Context: close_attestation_account.rs#L52-L58, close_attestation_account.rs#L124-L129

Description: The description of close_attestation_account documents the following:

/// Close a single attestation account

///

/// The attestation account must be older than 30 seconds to be closed.

/// The rent from the closed account is returned to the recipient (original creator).

However, when looking at the actual implementation, one can see that it actually only enforces.

require_gte!(

Clock::get()?.unix_timestamp,

self.attestation.created_at + ATTESTATION_EXPIRATION,

OndoError::AttestationTooNew

);

So while the documentation states that for the valid path the require-
ment is timestamp > createdAt + 30 seconds the actual code implements
timestamp >= createdAt + 30 seconds .

Recommendation: We recommend enforcing > instead of >= .

Ondo Finance: Fixed in commit 1b2b3e48.

Cantina Managed: Fix verified.

3.4.3 Attestations can be reused by closing and recreating attestation PDAs before expiration

Severity: Low Risk

Context: close_attestation_account.rs#L52-L58, close_attestation_account.rs#L124-L129, token_man-
ager.rs#L63-L117, token_manager.rs#L819-L833

15

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L80
https://github.com/ondoprotocol/gm-solana/commit/96c2c9ba3520cf6fd4d7d35463f315b6758fd016
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L52-L58
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L124-L129
https://github.com/ondoprotocol/gm-solana/commit/1b2b3e48145cd6b8bcdfc66f84c89cfa0ffb5ef2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L52-L58
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L124-L129
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L63-L117
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L63-L117
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L819-L833

Description: The implementation intends to prevent attestation replay by creating a unique Attestation
PDA per attestation_id on first use, and rejecting subsequent uses of the same ID. However, the
combination of the attestation-closure logic and the initialization logic allows an attestation to be closed
and then reused while it is still within its expiration window.

Implementation details:

1. Mint/Redeem path uses only expiration and does not bind it to ATTESTATION_EXPIRATION .

During mint/redeem, the program enforces only:

// Check attestation expiration

require!(

current_timestamp < expiration,

OndoError::AttestationExpired

);

There is no check that expiration - current_timestamp < ATTESTATION_EXPIRATION , i.e.
that the actual validity window is smaller than ATTESTATION_EXPIRATION .

2. Attestation account creation treats ”account empty” as unused.

The initialize_attestation_account function marks an attestation as consumed by creating a
PDA and writing an Attestation struct, but it only considers an attestation ”already used” if the
account is non-empty and has lamports:

if self.attestation_id_account.lamports() == 0

|| self.attestation_id_account.data_is_empty()

{

// create account and write Attestation { attestation_id, creator, created_at,

bump }↪→

// ...

Ok(())

} else {

Err(OndoError::AttestationAlreadyUsed.into())

}

If the PDA has 0 lamports or empty data, it is treated as unused and can be recreated.

3. Close instructions only require 30 seconds since created_at , not actual attestation expiry.

The close logic uses ATTESTATION_EXPIRATION (30 seconds) only to gate when an attestation
account can be closed:

require_gte!(

Clock::get()?.unix_timestamp,

self.attestation.created_at + ATTESTATION_EXPIRATION,

OndoError::AttestationTooNew

);

The path does not check the attestation's expiration parameter.

Attack path and impact:

Assuming an attestation which expires ≥ 30 seconds in the future (currently not rejected by program):

1. Use an attestation once (mint or redeem).

2. Wait ≥ 30 seconds (as per ATTESTATION_EXPIRATION).

3. Close the corresponding Attestation PDA (reclaiming rent).

4. Re-use the same attestation (same attestation_id , signature, price , amount , expiration) as
long as expiration is still in the future.

This contradicts the intended replay-protection semantics that should prevent double-spending. Off-chain
logic might prevent attestations expiring ≥ 30 seconds in the future, but on-chain enforcement is still
insufficient.

Time drift between on-chain and off-chain system:

16

Additionally, note that the expiration field used to gate attestation validity is likely derived from the
off-chain quoting system's clock, not the Solana cluster's Clock sysvar. This means any clock drift or
skew between the off-chain signer and the Solana cluster can extend the effective on-chain lifetime of an
attestation beyond what is intended off-chain, further widening the window in which a closed attestation
account can be recreated and the attestation reused. Even if the off-chain system tries to enforce a short
validity window, inaccurate clocks can still result in on-chain acceptance of attestations that the off-chain
system considers expired, exacerbating the replay risk without any explicit user error.

Example: If the off-chain signer's clock is 10 seconds ahead, it might issue an attestation with
expiration = now_off + 30 , which on-chain looks like expiration = now_on + 40 . This extra 10
seconds of effective on-chain validity widens the window in which a closed attestation account can be
recreated and the same attestation reused.

Recommendation: It is recommended to enforce a maximum validity window on-chain. At
attestation use (mint/redeem), in addition to current_timestamp < expiration , also check
expiration - current_timestamp < ATTESTATION_EXPIRATION .

Ondo Finance: Fixed in commit 1b2b3e48.

Cantina Managed: Fix verified.

3.4.4 Admin can't overwrite non-zero limit_window

Severity: Low Risk

Context: gm_token_manager_admin_operations.rs#L555-L558

Description: The set_ondo_user_rate_limit() function can be used by the admin to adjust a user's
rate limits.

pub fn set_ondo_user_rate_limit(&mut self, rate_limit: u64) -> Result<()> {

// Set the rate_limit field

self.ondo_user.rate_limit = Some(rate_limit);

// If limit_window is not set or is zero, use default 3600 seconds (1 hour)

if self.ondo_user.limit_window.is_none() || self.ondo_user.limit_window == Some(0) {

self.ondo_user.limit_window = Some(DEFAULT_LIMIT_WINDOW);

}

// Initialize rate_used fields if not already set

if self.ondo_user.mint_capacity_used.is_none() {

self.ondo_user.mint_capacity_used = Some(0);

}

if self.ondo_user.redeem_capacity_used.is_none() {

self.ondo_user.redeem_capacity_used = Some(0);

}

This will only allow the admin to set the limit window to the default if it is none or 0. However if the user
set it to something very low like one second, no changes can be made.

Recommendation: We recommend allowing the admin to set a custom limit_window .

Ondo Finance: Fixed in commit bee06b2d.

Cantina Managed: Fix verified.

3.4.5 Restriction on multisig usage as the upgrade authority

Severity: Low Risk

Context: role_operations.rs#L14-L31

Description: The InitRoles context struct uses the admin as the payer for the rent used to create the
respective role account. This admin is enforced to be the upgrade authority of the program.

Since this account holds a lot of power, it is common practice to use a multisig in its place.

17

https://github.com/ondoprotocol/gm-solana/commit/1b2b3e48145cd6b8bcdfc66f84c89cfa0ffb5ef2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L555-L558
https://github.com/ondoprotocol/gm-solana/commit/bee06b2df9228a43d9d971dcc52498825f943040
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L14-L31

#[account(mut)]

pub admin: Signer<'info>,

// [...]

#[account(

init,

payer = admin,

space = Roles::INIT_SPACE,

seeds = [role.seed(), user.key().as_ref()],

bump

)]

pub roles: Account<'info, Roles>,

Solana restricts lamport transfers using the system_program::transfer instruction from deducting
lamports from accounts holding data. It is important to note that anchor's payer constraint uses this
instruction to transfer lamports from the payer to the newly created account.

This means any multisig which uses data-holding accounts as the signer is not usable with the program.

Of the currently popular solana multisigs which are open source, Goki uses a PDA holding data as the
signer for multisig transactions.

Recommendation: Consider adding a separate payer account to the InitRoles struct, using it solely
to pay for the roles account's rent.

#[account(mut)]

pub admin: Signer<'info>,

#[account(mut)]

pub payer: Signer<'info>,

// [...]

#[account(

init,

payer = payer,

space = Roles::INIT_SPACE,

seeds = [role.seed(), user.key().as_ref()],

bump

)]

pub roles: Account<'info, Roles>,

Ondo Finance: Fixed in commit c62cb0a9.

Cantina Managed: Fix verified.

3.4.6 GM token minter bypasses token-level mint limits

Severity: Low Risk

Context: gm_token_admin_operations.rs#L169-L178

Description: The GmTokenMinter::mint_gm instruction allows any holder of MINTER_ROLE_GMTOKEN
to mint arbitrary amounts of a GM token without enforcing the configured token-level mint limits.

In the GmTokenMinter account context.

#[account(

seeds = [TOKEN_LIMIT_ACCOUNT_SEED, token_limit_account.mint.as_ref()],

bump = token_limit_account.bump,

has_one = mint @ OndoError::InvalidInputMint

)]

pub token_limit_account: Account<'info, TokenLimit>,

the token_limit_account is required and correctly bound to the mint account via has_one = mint ,
but it is never read or enforced in mint_gm .

As a result:

18

https://github.com/ondoprotocol/gm-solana/commit/c62cb0a9c2046c248677cd02041343ad83ee0ab5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L169-L178

• Any MINTER_ROLE_GMTOKEN holder can mint unbounded amounts of a GM token, regardless of
configuration in the TokenLimit account.

• The presence of token_limit_account in the account context gives a false sense of enforcement,
but it is effectively ignored in the logic.

• This creates a privileged-path minting bypass relative to the rate/limit controls enforced in other
flows.

Recommendation: It is recommended to load and enforce the TokenLimit configuration before calling
mint_to in GmTokenMinter::mint_gm using the same capacity/rate-limit helpers as in other flows.

Ondo Finance: Fixed in commit e0e9087e.

Cantina Managed: Fix verified.

3.4.7 USDon token minter/burner bypasses token-level mint limits

Severity: Low Risk

Context: usdon_admin_operations.rs#L121-L130, usdon_admin_operations.rs#L219-L228

Description: Both USDonMinter::mint_usdon and USDonBurner::burn_usdon require a
TokenLimit PDA in their account context, but never actually use it to enforce any limits. For
example, in the USDonMinter account context.

#[account(

seeds = [TOKEN_LIMIT_ACCOUNT_SEED, token_limit_account.mint.as_ref()],

bump = token_limit_account.bump,

has_one = mint @ OndoError::InvalidInputMint

)]

pub token_limit_account: Account<'info, TokenLimit>,

the token_limit_account is never read, so any holder of MINTER_ROLE_USDON or ADMIN_ROLE_USDON
(likely intended in the admin case) can mint unbounded USDon regardless of the configured TokenLimit

for that mint. The same pattern exists for USDonBurner with BURNER_ROLE_USDON .

Recommendation: It is recommended to load and enforce the TokenLimit state before calling mint_to
in USDonMinter::mint_usdon , using the same capacity/rate-limit helpers as in other flows. Apply similar
logic to USDonBurner::burn_usdon . Reconsider if the ADMIN_ROLE_USDON should still be able to bypass
these limits.

Ondo Finance: Fixed in commit e0e9087e.

Cantina Managed: Fix verified.

3.4.8 Non ATA usdc_vault / usdon_vault will lead to all swaps reverting

Severity: Low Risk

Context: usdc_swap_context.rs#L139-L146

Description: Both the initialize_usdon_manager and set_usdc_vault functions allow for setting
the usdc_vault account to an arbitrary address.

pub fn set_usdc_vault(&mut self, new_usdc_vault: Pubkey) -> Result<()> {

// Validate the new USDC vault address

require!(

new_usdc_vault != Pubkey::default(),

OndoError::InvalidTokenAccount

);

// Set the new USDC vault address

self.usdon_manager_state.usdc_vault = new_usdc_vault;

Ok(())

}

19

https://github.com/ondoprotocol/gm-solana/commit/e0e9087ea918164e27d9c9cd00d0f7409e839b03
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L121-L130
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L219-L228
https://github.com/ondoprotocol/gm-solana/commit/e0e9087ea918164e27d9c9cd00d0f7409e839b03
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L139-L146

However, when the address is actually used in the UsdcSwapContext , it must be the ATA of
usdon_manager_state .

/// The USDC vault storing USDC tokens received from users during swaps

#[account(

mut,

associated_token::mint = usdc_mint,

associated_token::authority = usdon_manager_state,

constraint = usdc_vault.key() == usdon_manager_state.usdc_vault

)]

pub usdc_vault: Box<InterfaceAccount<'info, TokenAccount>>,

This will cause all USDC actions to revert if the usdc_vault address is set to any address other than the
ATA of usdon_manager_state . The same issue occurs for the usdon_vault .

Recommendation: We recommend restricting initialize_usdon_manager , set_usdc_vault , and
set_usdon_vault to only allow for the ATA of usdon_manager_state .

Ondo Finance: Fixed in commit ef33da06.

Cantina Managed: Fix verified.

3.4.9 swap_usdon_to_usdc() allows for 0 value swap

Severity: Low Risk

Context: token_manager.rs#L656-L658

Description: The swap functions are intended not to allow for zero-value swaps. To ensure this, the
following check is added at the start of both.

// Validate that input amount is greater than zero

require_gt!(amount_in, 0);

However, in the swap_usdon_to_usdc() , the decimal conversion will downcast any value < 1000 to 0,
and thus still allow for a zero value swap while passing the first check.

// Normalize decimals from USDon (9 decimals) to USDC (6 decimals)

let normalized_amount_out =

normalize_decimals(amount_in, self.usdon_mint.decimals, usdc_mint.decimals)?;

Recommendation: We recommend ensuring that normalized_amount_out > 0 before continuing.

Ondo Finance: Fixed in commit b3160db6.

Cantina Managed: Fix verified.

3.4.10 Missing oracle-based swap pricing logic, swaps are always 1:1 despite
oracle_price_enabled

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: The spec describes an oracle mode for USDC↔USDon swaps where the exchange rate is
derived from the Pyth USDC price and a scaling factor:

price_ratio = (usdc_price * PRICE_SCALING_FACTOR) / usdon_price

amount_out = (amount_in * price_ratio) / PRICE_SCALING_FACTOR

Additionally, there is a fixed mode with amount_out = amount_in . It also states that
oracle_price_enabled toggles between ”oracle vs fixed pricing”.

Implementation:

• USDonManagerState exposes the expected configuration.

• The swap functions in token_manager.rs ignore the oracle price for rate calculation and always
perform a nominal 1:1 swap (only decimal-normalized).

20

https://github.com/ondoprotocol/gm-solana/commit/ef33da065c075c5dde0227ebff786bfc5af11b2c
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L656-L658
https://github.com/ondoprotocol/gm-solana/commit/b3160db6bda14d7327aacfe0d6bebb84737d1a3e

• usdc_oracle_sanity_check only enforces freshness and a minimum USDC price, not a rate.

Consequences:

• Swaps are effectively always at 1:1 token units (adjusted for decimals), regardless of the oracle price.

• oracle_price_enabled behaves as a boolean gate for a sanity check, not as amode switch between
oracle and fixed pricing.

• The documented oracle-mode formula and the distinction between ”oracle vs fixed” pricing are not
implemented on-chain.

Recommendation: It is recommended to implement the documented oracle-based pricing in
swap_usdc_to_usdon and swap_usdon_to_usdc .

Ondo Finance: Fixed in commit 66404927.

Cantina Managed: Fix verified.

3.4.11 Pyth oracle sanity check ignores price exponent

Severity: Low Risk

Context: token_manager.rs#L718-L738

Description: In the USDC oracle sanity check, the code reads the Pyth V2 PriceUpdateV2 and uses only
the raw price field, ignoring the associated exponent:

• Pyth prices are represented as (price, expo) ; the real price** is price * 10^expo .

• Here, only price is compared to MIN_PRICE , assuming MIN_PRICE is encoded using the same
exponent as the current USDC feed.

• This works today only because MIN_PRICE was chosen to match the current
feed's exponent, but it is fragile in case of future changes. Then the comparison
require_gte!(usdc_price, MIN_PRICE, ...) can become semantically wrong, either
failing valid prices or accepting under-priced USDC, undermining the intended price floor.

Recommendation: It is recommended to explicitly handle the price exponent when performing sanity
checks.

Ondo Finance: Fixed in commit 80979649.

Cantina Managed: Fix verified.

3.4.12 Attestation signer address is not validated

Severity: Low Risk

Context: token_manager.rs#L129-L140

Description: The attestation verification logic reads the expected Ethereum address directly from
GmTokenManagerState.attestation_signer_secp without checking that it has been configured to a
non-zero value:

// Get the expected Ethereum address from the gmtoken manager state

let eth_address = self.gmtoken_manager_state.attestation_signer_secp;

This field defaults to [0u8; 20] when GmTokenManagerState is first created, and there is no guard that
rejects the all-zero address. If the manager is initialized (or later updated) without setting a valid signer,
the program will still treat the state as ”configured”, but no real attestation can ever pass the secp check,
effectively creating a self-inflicted DoS of all trading flows that rely on attestations.

Recommendation: It is recommended to add a validation that the address is non-zero:

require!(

eth_address != [0u8; 20],

OndoError::AttestationSignerEthAddressNotSet

);

21

https://github.com/ondoprotocol/gm-solana/commit/66404927fc6a530b72307839df3eec908ffba46d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L718-L738
https://github.com/ondoprotocol/gm-solana/commit/80979649c3e828746062d087be5af4542273e4fd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L129-L140

Ondo Finance: Fixed in commit ae36dd5b.

Cantina Managed: Fix verified.

3.4.13 Minting/Redeeming can not be used with non-ATA token accounts

Severity: Low Risk

Context: usdc_swap_context.rs#L166-L170, usdc_swap_context.rs#L166-L171, usdc_swap_con-
text.rs#L182-L187, usdc_swap_context.rs#L182-L188, usdon_swap_context.rs#L145-L150, usdon_swap_-
context.rs#L145-L151

Description: Both the UsdcSwapContext and the USDonSwapContext restrict the token accounts pro-
vided by the users to be their corresponding ATAs.

/// The user's USDon token account

#[account(

mut,

associated_token::mint = usdon_mint,

associated_token::authority = user,

associated_token::token_program = token_program,

)]

pub user_usdon_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

This blocks users from paying with regular token accounts.

Recommendation: We recommend allowing also for non ATA accounts.

Ondo Finance: Fixed in commit e7aafec8.

Cantina Managed: Fix verified.

3.4.14 USDC accounts don't verify correct token program

Severity: Low Risk

Context: usdc_swap_context.rs#L139-L146, usdc_swap_context.rs#L166-L171

Description: Neither the user_usdc_token_account nor the usdc_vault verifies that the SPL token
program owns them.

/// The user's USDC token account

#[account(

mut,

associated_token::mint = usdc_mint,

associated_token::authority = user,

)]

pub user_usdc_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

#[account(

mut,

associated_token::mint = usdc_mint,

associated_token::authority = usdon_manager_state,

constraint = usdc_vault.key() == usdon_manager_state.usdc_vault

)]

pub usdc_vault: Box<InterfaceAccount<'info, TokenAccount>>,

For all other token2022 accounts, this is implemented.

Recommendation: We recommend adding a constraint that checks the token program.

Ondo Finance: Fixed in commit e7aafec8.

Cantina Managed: Fix verified.

22

https://github.com/ondoprotocol/gm-solana/commit/ae36dd5b9be594a641c3a7e9af98336017cf928d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L170
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L171
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L187
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L187
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L188
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L150
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L151
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L151
https://github.com/ondoprotocol/gm-solana/commit/e7aafec8c9c6cba2a6a4a8ed23ae193f286e654d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L139-L146
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L171
https://github.com/ondoprotocol/gm-solana/commit/e7aafec8c9c6cba2a6a4a8ed23ae193f286e654d

3.4.15 oracle_price_max_age not checked against MAX_AGE_UPPER_BOUND on initialization

Severity: Low Risk

Context: usdon_manager_admin_operations.rs#L66

Description: When the oracle_price_max_age gets updated in the set_oracle_price_max_age

function, it is checked as follows.

// Validate the new oracle price max age

require_gt!(oracle_price_max_age, 0, OndoError::InvalidOraclePriceMaxAge);

// Ensure it does not exceed the upper bound

require_gte!(

MAX_AGE_UPPER_BOUND,

oracle_price_max_age,

OndoError::InvalidOraclePriceMaxAge

);

This ensures that 0 <oracle_price_max_age <= MAX_AGE_UPPER_BOUND . However, the check on ini-
tialization is only this:

require_gt!(oracle_price_max_age, 0, OndoError::InvalidOraclePriceMaxAge);

This only enforces 0 <oracle_price_max_age with no upper bound. As a result the price could actually
be greater than MAX_AGE_UPPER_BOUND .

Recommendation: We recommendadding a check for the oracle_price_max_age <= MAX_AGE_UPPER_BOUND .

Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.16 usdc_price_update could be zero

Severity: Low Risk

Context: usdon_manager_admin_operations.rs#L80

Description: When updating the usdc_price_update using the set_usdc_price_update_address

the program ensures that the address is not zero.

pub fn set_usdc_price_update_address(

&mut self,

new_price_update_address: Pubkey,

) -> Result<()> {

// Validate the new price update address

require!(

new_price_update_address != Pubkey::default(),

OndoError::InvalidOraclePriceAddress

);

However, in the initializer, any address is passed without a check against it being zero.

// Write data to the USDonManagerState account

self.usdon_manager_state.set_inner(USDonManagerState {

owner: self.admin.key(),

usdon_mint,

oracle_price_enabled,

oracle_price_max_age,

usdc_price_update,

usdc_vault,

usdon_vault,

bump: bumps.usdon_manager_state,

});

Recommendation: We recommend verifying that the usdc_price_update != Pubkey::default() .

23

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L66
https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L80

Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.17 Zero usdon_mint can be intialized

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: The initializer of the InitializeUSDonManager verifies all addresses besides the
usdon_mint to be non-zero.

// Validate vault addresses

require!(

usdc_vault != Pubkey::default() && usdon_vault != Pubkey::default(),

OndoError::InvalidVault

);

// Write data to the USDonManagerState account

self.usdon_manager_state.set_inner(USDonManagerState {

owner: self.admin.key(),

usdon_mint,

oracle_price_enabled,

oracle_price_max_age,

usdc_price_update,

usdc_vault,

usdon_vault,

bump: bumps.usdon_manager_state,

});

This could allow for accidentally intializing the account with a 9 mint, which also couldn't be changed post
deployment.

Recommendation: We recommend checking that usdon_mint != 0 in the intializer.

Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.18 USDC mint constraint is commented out in UsdcSwapContext

Severity: Low Risk

Context: usdc_swap_context.rs#L158-L163

Description: In the USDC swap context, the usdc_mint account is intended to be constrained to the USDC
mint on mainnet, but the constraint is commented out with a ”remember to uncomment for mainnet”
comment:

/// The USDC mint (SPL Token)

#[account(

mint::token_program = spl_token_program,

//constraint = usdc_mint.key() == USDC_MINT uncomment for mainnet (use for

devnet/testnet)↪→

)]

pub usdc_mint: Box<InterfaceAccount<'info, Mint>>,

This relies on a manual code edit to enforce the correct USDC mint, which is error-prone and easy to forget,
especially across deployments or refactors.

Recommendation: It is recommended to replace the commented constraint with a compile-time configu-
ration using Cargo features or explicit environment flags. For example:

#[account(

mint::token_program = spl_token_program,

#[cfg(feature = "mainnet")]

constraint = usdc_mint.key() == USDC_MINT @ OndoError::InvalidUsdcMint

24

https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L158-L163

)]

pub usdc_mint: Box<InterfaceAccount<'info, Mint>>;

Ondo Finance: Fixed in commit ff7c68dd.

Cantina Managed: Fix verified.

3.4.19 GM token admin mint cannot target PDA recipients

Severity: Low Risk

Context: gm_token_admin_operations.rs#L151-L157

Description: The GmTokenMinter adminmint instruction cannotmint GM tokens to PDA-owned accounts,
only to system-owned accounts. The recipient is constrained as a SystemAccount<'info> . Anchor's
SystemAccount enforces that user is owned by the system program, which PDAs (owned by the program)
are not.

Consequences:

• Admins cannot mint GM tokens directly to program-owned PDAs (e.g. treasury PDAs, custodial
accounts, vaults), only to EOAs.

• Any desired minting to PDA-controlled addresses must go via an intermediate EOA + transfer, which
may conflict with operational or compliance requirements.

Recommendation: It is recommended to relax the recipient type to allow PDAs. For exam-
ple, change pub user: SystemAccount<'info> to a more general UncheckedAccount<'info> or
AccountInfo<'info> with explicit ownership checks if needed.

Ondo Finance: Fixed in commit 421ca348.

Cantina Managed: Fix verified.

3.4.20 Incorrect mint used in swap_usdc_to_usdon

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: When swap_usdc_to_usdon normalizes the amount_out to USDC decimals, the wrong
mint is used for to_decimals .

let normalized_amount_out = normalize_decimals(amount_in, usdc_mint.decimals,

self.mint.decimals)?;↪→

The correct one would be self.usdon_mint.decimals since the decimals are normalized from USDC to
USDon . Since the decimals of USDon and GM tokens are currently the same, the calculation still returns
the correct result but should still be fixed since it's technically incorrect.

Recommendation: Consider changing self.mint.decimals to self.usdon_mint.decimals .

Ondo Finance: Fixed in commit e34b7c8b.

Cantina Managed: Fix verified.

3.4.21 Missing mint capabilities for AdminMintRoleGmtokenManager

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: According to the documentation, the AdminMintRoleGmtokenManager is supposed to be
able to mint GM tokens.

Role Seed Capabilities

AdminMintRoleGmtokenManager b”AdminMintRoleGmtokenManager” Administrative mints

25

https://github.com/ondoprotocol/gm-solana/commit/ff7c68dddd3262e67cf2ec58862145972af6c3c2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L151-L157
https://github.com/ondoprotocol/gm-solana/commit/421ca348ad6a7ed8444bf2b2f66201898d7b77a3
https://github.com/ondoprotocol/gm-solana/commit/e34b7c8b22dd7d94abc2170531d79684b2e36657

Looking at the GmTokenMinter context struct, however, only the MINTER_ROLE_GMTOKEN role can call
mint_gm :

pub struct GmTokenMinter<'info> {

/// The operator minting tokens, pays for destination account if needed

#[account(mut)]

pub operator: Signer<'info>,

#[account(

seeds = [RoleType::MINTER_ROLE_GMTOKEN, operator.key().as_ref()],

bump = roles.bump,

)]

pub roles: Account<'info, Roles>,

// [...]

}

Recommendation: Consider allowing the AdminMintRoleGmtokenManager to mint GM tokens.

Ondo Finance: Fixed in commit 029a3ffc.

Cantina Managed: Fix verified.

3.4.22 USDon guardian cannot remove roles after giving them

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: Looking at how the RoleType::MinterRoleUsdon , RoleType::PauserRoleUsdon and
RoleType::BurnerRoleUsdon are used, it is apparent that those roles can be granted by the
GUARDIAN_USDON but not revoked by him anymore since the only instruction using these roles is
init_usdon_roles .

pub fn init_usdon_roles(&mut self, role: RoleType, bumps: &USDonInitRolesBumps) ->

Result<()> {↪→

require!(

matches!(

role,

RoleType::MinterRoleUsdon | RoleType::PauserRoleUsdon |

RoleType::BurnerRoleUsdon↪→

),

OndoError::InvalidRoleType

);

// [...]

}

Looking at all other code segments giving roles, there is always another codepath allowing removal of the
given roles except for this one.

Recommendation: Consider adding a function remove_usdon_roles , allowing the guardian to take
away given roles again.

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.4.23 Several defined roles are unused in the Solana program

Severity: Low Risk

Context: roles.rs#L22-L51

Description: The Solana program definesmultiple RoleType variants and seeds that are never referenced
outside roles.rs , i.e. no instruction uses them for access control or behavior:

• TokenFactoryRole .

• PauserRoleTokenManagerRegistrar .

26

https://github.com/ondoprotocol/gm-solana/commit/029a3ffc55d72600307bbcd45f6d83b8e42319b8
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/state/roles.rs#L22-L51

• AdminRoleTokenManagerRegistrar .

• PauseTokenRole .

• AdminRolePauseToken .

• ComplianceOwnerRole .

• OwnerIssuanceHoursRole .

The Solana specification and the Solidity reference design both describe functionalitymapped to these roles
(e.g. TokenManagerRegistrar pausing/config, compliance owner, issuance-hours owner, token-pause ad-
min), but there is no corresponding implementation on Solana. This creates a specification/implementation
gap and can mislead integrators.

Recommendation: It is recommended to decide per role whether it should be implemented or removed.

Ondo Finance: Fixed in commit 1a869cb7. Removes most unused roles, ”OWNER_ISSUANCE_HOURS_-
ROLE” to be used.

Cantina Managed: Fix verified.

3.4.24 Defined but unused error codes indicate missing or incomplete validations

Severity: Low Risk

Context: errors.rs#L4-L97

Description: Several error variants are defined in errors.rs but are never used anywhere else in the
Solana program. This suggests that some intended validations or safety checks are missing or only partially
implemented:

• Swap / pricing related:

– InvalidOutputMint .

– SlippageExceeded .

– InvalidMints .

– TokenSwapPaused .

• Access control / compliance related:

– AddressAlreadyInRole .

– BlocklistNotInitialized .

– UserNotWhitelisted .

• Attestation / signature diagnostics:

– InvalidInstructionIndex .

– AttestationSignerEthAddressNotSet .

– PubkeyRecoveryFailed .

– EthAddressRecoveryFailed .

– EthAddressMismatch .

– InvalidSignatureParams .

Overall, these unused error codes show a mismatch between documented/intended behavior and what is
actually enforced on-chain, and they can mislead integrators into assuming certain protections (slippage
limits, swap-level pause, blocklist, richer signature diagnostics) exist when they do not.

Recommendation: It is recommended for each unused error to either implement the intended validation
or remove the error to reflect the actual behavior.

Ondo Finance: Fixed in commit c247ed8b.

Cantina Managed: Fix verified.

27

https://github.com/ondoprotocol/gm-solana/commit/1a869cb796fc63525c21de758e2b0c04593b2b4e
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/errors.rs#L4-L97
https://github.com/ondoprotocol/gm-solana/commit/c247ed8b706c774ef15bc5b67fed400e365da1de

3.4.25 init_usdon_roles misses RoleGranted event

Severity: Low Risk

Context: usdon_admin_operations.rs#L74

Description: All of the role setting functions emit the RoleGranted event.

// Emit event for role granted

emit!(RoleGranted {

role,

grantee: user,

granter: self.admin.key(),

});

However on the init_usdon_roles function the event is not emitted.

Recommendation: We recommend adding an emit.

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.4.26 Sanity checker can be initialized with zero last_price

Severity: Low Risk

Context: sanity_checker_admin_operations.rs#L77-L85

Description: When setting the last price of the sanity checker using set_last_price() it is checked that
the price needs to be greater than 0.

pub fn set_last_price(&mut self, last_price: u64) -> Result<()> {

require!(last_price > 0, OndoError::InvalidPrice);

However when initializing the sanity checker this is not checked.

// Write to the sanity check account

self.sanity_check.set_inner(OracleSanityCheck {

last_price,

mint: self.mint.key(),

allowed_deviation_bps,

max_time_delay,

price_last_updated: Clock::get()?.unix_timestamp,

bump: bumps.sanity_check,

});

Recommendation: We recommend adding a check to the initializer to ensure that last_price > 0 .

Ondo Finance: Fixed in commit 7afcee22.

Cantina Managed: Fix verified.

3.4.27 mint is missing token program check

Severity: Low Risk

Context: usdc_swap_context.rs#L29-L34, usdon_swap_context.rs#L28-L33

Description: Both the USDonSwapContext as well as the UsdcSwapContext include the mint account
in their context. This account is the gm token that the swap/redeem will be done for.

/// The GM Token mint involved in the swap

#[account(

mut,

mint::authority = mint_authority,

)]

pub mint: Box<InterfaceAccount<'info, Mint>>,

28

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L74
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/sanity_checker_admin_operations.rs#L77-L85
https://github.com/ondoprotocol/gm-solana/commit/7afcee2269f80591148ac70e66e194abe03fe0cd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L29-L34
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L28-L33

The account constraints however never check the token program of these mints. As a result a incorrect
mint could be passed. This is currently mitigated by other restrictions, but it's highly recommended to
always check the token program on every mint/token account.

Recommendation: We recommend adding a check for the token program.

Ondo Finance: Fixed in commit 4ce72532.

Cantina Managed: Fix verified.

3.4.28 Users will loose up to 999 lamports of USDon on each USDC redemption

Severity: Low Risk

Context: (No context files were provided by the reviewer)

Description: On a USDC redemption, the user is first minted the corresponding value in USDon.

mint_to(

CpiContext::new_with_signer(

ctx.token_program.to_account_info(),

MintTo {

mint: ctx.usdon_mint.to_account_info(),

to: ctx.user_usdon_token_account.to_account_info(),

authority: ctx.mint_authority.to_account_info(),

},

signer_seeds,

),

mint_amount,

)?;

Afterwards a swap will be called that will first noralize the amount to USDC decimals:

let normalized_amount_out = normalize_decimals(amount_in, self.usdon_mint.decimals,

usdc_mint.decimals)?;↪→

Afterwards it will draw the full mint_amount from the user and transfer him normalized_amount_out

of USDC.

transfer_checked(

CpiContext::new(

self.token_program.to_account_info(),

TransferChecked {

from: self.user_usdon_token_account.to_account_info(),

mint: self.usdon_mint.to_account_info(),

to: self.usdon_vault.to_account_info(),

authority: self.user.to_account_info(),

},

),

amount_in,

self.usdon_mint.decimals,

)?;

// Step 2: Transfer USDC tokens from protocol vault to user

// This releases USDC from the protocol's vault to the user's account

if normalized_amount_out != 0 {

transfer_checked(

CpiContext::new_with_signer(

self.spl_token_program

.as_ref()

.ok_or(OndoError::TokenProgramNotProvided)?

.to_account_info(),

TransferChecked {

from: self

.usdc_vault

.as_ref()

.ok_or(OndoError::InvalidTokenAccount)?

.to_account_info(),

29

https://github.com/ondoprotocol/gm-solana/commit/4ce72532b82e12191a78077a01e4443a21a75d4a

mint: usdc_mint.to_account_info(),

to: self

.user_usdc_token_account

.as_ref()

.ok_or(OndoError::InvalidTokenAccount)?

.to_account_info(),

authority: self.usdon_manager_state.to_account_info(),

},

&[&[USDON_MANAGER_STATE_SEED, &[self.usdon_manager_state.bump]]],

),

normalized_amount_out,

usdc_mint.decimals,

)?;

}

This leads to the user effectively overpaying for USDC. The two tokens should be pegged at a 1:1, but in
this case, the user will lose up to 999 lamports of USDon. If, for example, the mint_amount == 1999 ,
the conversion would normalize this to normalized_amount_out == 1 . However, it would draw the full
1999 lamports of USDon from the user, which would be worth 1.999 USDC . So the user would, in that
case, lose the 999 lamports of USDon to the protocol.

Recommendation: We recommend only drawing

normalize_decimals(normalized_amount_out, usdc_mint.decimals, self.usdon_mint.decimals)

from the USDon vault, which will let the user keep the rounding losses.

Ondo Finance: Fixed in commit 17e9f02d.

Cantina Managed: Fix verified.

3.4.29 Type conversion can lead to unexpected behavior

Severity: Low Risk

Context: capacity.rs#L22

Description: Both the user's and any GM token's limit_window can be set by the
ADMIN_ROLE_GMTOKEN_MANAGER up to u64::MAX . The problem is that setting it to any value larger than
i64::MAX for an account will freeze any interactions with that account.

This is because in calculate_capacity_used , which is used by check_token_rate_limit and
check_user_rate_limit , the limit_window is cast to an i64 and i64::try_from(limit_window)

errors for any value larger than i64::MAX :

if time_since_last_update >= i64::try_from(limit_window)? {

Recommendation: Consider casting time_since_last_update (to a u64) for the check instead of
limit_window . This is safe since time_since_last_update should never be negative in this context
anyways.

Ondo Finance: Fixed in commit 77ccb283.

Cantina Managed: Fix verified.

3.4.30 Signature verification has more restrictions than intended

Severity: Low Risk

Context: token_manager.rs#L227-L237

Description: The current implementation of the signature verification in verify_secp256k1_ix is
supposed to pass whenever there is ”at least one valid secp instruction in the transaction”. Right now this
is not the case due to two bugs.

• Iterating over 20 instructions:

30

https://github.com/ondoprotocol/gm-solana/commit/17e9f02d6829f61c5503fb87bee31b8f467af1e5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/utils/capacity.rs#L22
https://github.com/ondoprotocol/gm-solana/commit/77ccb2839c54c7bc7277110513872f67b98d1801
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L227-L237

fn verify_secp256k1_ix(

&self,

ix_sysvar: &AccountInfo,

expected_digest32: &[u8; 32],

expected_eth_address20: [u8; 20],

) -> Result<()> {

// Iterate through the instructions in the sysvar to find a matching secp256k1

instruction↪→

for i in 0..20 {

// [...]

}

err!(SecpError::MissingOrMismatchedSecpIx)

}

verify_secp256k1_ix iterates over a maximum of 20 instructions. Since it's technically possible
to have transactions with more than 20 instructions in solana, such a transaction would fail even if
it's valid and contains a valid secp instruction.

• Only first instruction considered: Looking at secp_matches , the function returns an error if the
passed instruction does not pass validation.

fn secp_matches(

&self,

ix: &Instruction,

digest: &[u8; 32],

eth_addr: [u8; 20],

) -> Result<bool> {

// [...]

require!(!data.is_empty(), SecpError::MalformedSecpIx);

require!(data[0] == 1, SecpError::WrongSigCount);

// [...]

require!(data.len() >= rd + 11, SecpError::MalformedSecpIx);

// [...]

require!(msg_len == 32, SecpError::WrongDigestLen);

require!(msg_off + msg_len <= data.len(), SecpError::MalformedSecpIx);

require!(eth_off + 20 <= data.len(), SecpError::MalformedSecpIx);

// [...]

require!(msg == digest, SecpError::DigestMismatch);

require!(eth_addr_in_ix == eth_addr, SecpError::AddressMismatch);

Ok(true)

}

This means verify_secp256k1_ix will error if the first found secp instruction is not the one it's
looking for, even if there is a valid one later on in the instruction list.

if self.secp_matches(&ix, expected_digest32, expected_eth_address20)? {

return Ok(());

}

Recommendation: Consider changing the semantics of the signature verification, enforcing that signature
instructions must be one index before the instruction they are verified in.

For example, if a transaction contains two redeem_for_usdon instructions, one at index 2 and the other
one at index 5, then the corresponding signature instructions must be at index 1 and 4 respectively. This
would simplify the signature check and allow for bundling of mints/redemptions.

Ondo Finance: Fixed in commit 9f06e4ae.

Cantina Managed: Fix verified.

31

https://github.com/ondoprotocol/gm-solana/commit/9f06e4ae549c647d2e22130dc495f085feff3379

3.5 Informational

3.5.1 Role initializing/closing is dependent on mutability of program

Severity: Informational

Context: role_operations.rs#L43-L47, role_operations.rs#L111-L115

Description: Currently the program's upgrade authority is taken as the highest authority in the program
since it is the only one capable of giving/taking admin roles.

#[account(mut)]

pub admin: Signer<'info>,

// [...]

#[account(

constraint =

program_data.upgrade_authority_address == Some(admin.key()) @

OndoError::InvalidUser↪→

)]

pub program_data: Account<'info, ProgramData>,

The problem with this approach is that in case the decision is made to make the program im-
mutable, this check can never be passed anymore since making a program immutable sets its
upgrade_authority_address to None .

Recommendation: In case the program will definitely never be made immutable, this is fine. If this might
be done, however, consider adding an admin role with the same privileges as the upgrade authority in
order to have the possibility to manage admin roles even if the program is made immutable.

Ondo Finance: Acknowledged. This is intentional. If a contract is ever planned to be made immutable
we will update this. On another note, all roles set by InitRoles are only really meant to be set during
deployment.

Cantina Managed: Acknowledged.

3.5.2 Tokens with transfer-allowed == false can still be transferred

Severity: Informational

Context: token_limit.rs#L36-L37

Description: The TokenLimit account is used to constrain mints. It includes the transfers_allowed

bool, which should disable transfers if set to false.

// Whether transfers are allowed for this token

pub transfers_allowed: bool,

However, this value is actually never checked anywhere. Thus, transfers for tokens with this set to false
will work without any issues.

Recommendation: We recommend disabling transfers for tokens with this value set.

Ondo Finance: Fixed in commit 8cfc3326.

Cantina Managed: Fix verified.

3.5.3 Misleading is_paused parameter name for enable_oracle_price

Severity: Informational

Context: usdon_manager_admin_operations.rs#L120-L130, lib.rs#L84-L88

Description: The enable_oracle_price admin instruction uses a parameter named is_paused , but
it directly sets the oracle_price_enabled flag, which inverts the intuitive meaning of the name and is
inconsistent with the rest of the pause naming in the codebase.

In the admin implementation:

32

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L43-L47
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L111-L115
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/state/token_limit.rs#L36-L37
https://github.com/ondoprotocol/gm-solana/commit/8cfc33264d50e442db86f7a2a9331b9e356b3895
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L120-L130
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L84-L88

pub fn enable_oracle_price(&mut self, is_paused: bool) -> Result<()> {

// Set the oracle price enabled state

self.usdon_manager_state.oracle_price_enabled = is_paused;

Ok(())

}

and exposed from the program:

pub fn enable_oracle_price(ctx: Context<USDonManagerAdmin>, is_paused: bool) ->

Result<()> {↪→

ctx.accounts.enable_oracle_price(is_paused)

}

Recommendation: It is recommended to rename the parameter to e.g. oracle_price_enabled: bool

(and update both lib.rs and usdon_manager_admin_operations.rs), so the call site matches the
stored field and avoids inversion/confusion.

Ondo Finance: Fixed in commit 3e16889d.

Cantina Managed: Fix verified.

3.5.4 Incorrect documentation of PauseGmToken

Severity: Informational

Context: gm_token_admin_operations.rs#L255

Description: The comment above the PauseGmToken context states ”Requires UNPAUSER_ROLE_GMTOKEN
role” however actually the caller needs to hold the PAUSER_ROLE_GMTOKEN role.

/// The Roles account verifying the pauser has PAUSER_ROLE_GMTOKEN

/// # PDA Seeds

/// - PAUSER_ROLE_GMTOKEN

/// - Pauser's address

#[account(

seeds = [RoleType::PAUSER_ROLE_GMTOKEN, pauser.key().as_ref()],

bump,

)]

pub roles: Account<'info, Roles>,

Recommendation: We recommend adapting the documentation to ”Requires PAUSER_ROLE_GMTOKEN
role”.

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

3.5.5 Incorrect documentation of MAX_SECONDS_EXPIRATION

Severity: Informational

Context: constants.rs#L53-L54

Description: The MAX_SECONDS_EXPIRATION constant is described as ”Maximum allowed attestation
expiration time (1 year in seconds)”. However, it actually restricts the expiry of the price updates, not the
attestations.

Recommendation: We recommend adapting the comment to ”Maximum allowed price delay”.

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

33

https://github.com/ondoprotocol/gm-solana/commit/3e16889d7846a35d207b060fdd7ba790530b4c7f
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L255
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/constants.rs#L53-L54
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222

3.5.6 Incorrect documentation of GmTokenManagerAdminGlobalPauser

Severity: Informational

Context: gm_token_manager_admin_operations.rs#L344-L348

Description: The GmTokenManagerAdminGlobalPauser context's functionality is described as ”/// Un-
pause subscriptions/redemptions for all GM Tokens”. However, actually, the function handles both pausing
and unpausing.

Recommendation: We recommend adapting the comment to ”/// Pause/Unpause subscriptions/redemp-
tions for all GM Tokens”.

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

3.5.7 trading_hours_offset missing in initialize_gmtoken_manager comment

Severity: Informational

Context: gm_token_manager_admin_operations.rs#L49-L66

Description: The NatSpec comment for the initialize_gmtoken_manager function is missing a de-
scription for the trading_hours_offset argument.

/// Initialize the GmTokenManagerState account

/// # Arguments

/// * `factory_paused` - Whether the GM Token factory should start in a paused state

/// * `redemptions_paused` - Whether redemptions should start in a paused state

/// * `subscriptions_paused` - Whether subscriptions should start in a paused state

/// * `attestation_signer_secp` - The secp256k1 Ethereum address of the attestation

signer (20 bytes)↪→

/// * `bumps` - The PDA bumps for account derivation

/// # Returns

/// * `Result<()>` - Ok if the GmTokenManagerState is successfully initialized, Err

otherwise↪→

pub fn initialize_gmtoken_manager(

&mut self,

factory_paused: bool,

redemption_paused: bool,

minting_paused: bool,

attestation_signer_secp: [u8; 20],

trading_hours_offset: i64,

bumps: &InitializeGmTokenManagerBumps,

) -> Result<()> {

Recommendation: We recommend adding a description for the trading_hours_offset argument.

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

3.5.8 Metadata update authority set to program PDA but no update path implemented

Severity: Informational

Context: token_factory.rs#L150-L160

Description: When deploying new mints in token_factory.rs , the Token-2022 metadata is initialized
with the program's mint authority PDA as both mint authority and update authority.

However, the current codebase does not implement any CPI to update metadata, so in practice metadata
is never changed on-chain. The configuration thus sits in an ambiguous state:

• To users, it may look like metadata is immutable.

• To developers, it is technically upgradable by future program changes (since the program holds the
update authority PDA), even though no current path exists.

34

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L344-L348
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L49-L66
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_factory.rs#L150-L160

This is not an immediate exploit, but is important for understanding trust and upgrade assumptions
around token metadata.

Recommendation: It is recommended to decide explicitly whether metadata should be immutable or
upgradable by the program.

Ondo Finance: Fixed in commit 6815abc3.

Cantina Managed: Fix verified.

3.5.9 Unnecessary role checks for AdminRoleGmtokenManager

Severity: Informational

Context: token_limit_admin_operations.rs#L68-L71, token_limit_admin_operations.rs#L179-L182

Description: Both the initialize_token_limit and the set_token_limit functions enforce the
following check.

require!(

self.roles.role == RoleType::AdminRoleGmtokenManager,

OndoError::AddressNotFoundInRole

);

However the role being the correct one is already verified based on the seed.

#[account(

seeds = [RoleType::ADMIN_ROLE_GMTOKEN_MANAGER, admin.key().as_ref()],

bump = roles.bump,

)]

pub roles: Account<'info, Roles>,

Recommendation: We recommend removing the unnecessary checks.

Ondo Finance: Fixed in commit 062b5dff.

Cantina Managed: Fix verified.

3.5.10 Incorrect comment in sanity checker

Severity: Informational

Context: sanity_checker_admin_operations.rs#L71

Description: The following check in the sanity check is described as ”Validate last price”.

// Validate last price

require!(

max_time_delay <= MAX_SECONDS_EXPIRATION, // 1 year lifetime in days, to be adjusted

OndoError::InvalidMaxTimeDelay

);

However this actually validates the price delay.

Recommendation: We recommend changing this to ”// Validate price delay”.

Ondo Finance: Fixed in commit 3109a7d8.

Cantina Managed: Fix verified.

3.5.11 Incorrect event emission in set_token_limit

Severity: Informational

Context: (No context files were provided by the reviewer)

Description: In set_token_limit , at the end an event is emitted indicating the newly set values.

35

https://github.com/ondoprotocol/gm-solana/commit/6815abc39c063250cd3e398384ccbaa7f3bbd6a0
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_limit_admin_operations.rs#L68-L71
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_limit_admin_operations.rs#L179-L182
https://github.com/ondoprotocol/gm-solana/commit/062b5dff801e950e8fc8d8f2f22498fc3f628604
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/sanity_checker_admin_operations.rs#L71
https://github.com/ondoprotocol/gm-solana/commit/3109a7d8497f39e29ce97e7aac37a1f2b40d1515

emit!(RateLimitTokenSet {

token: self.mint.key(),

limit: self.token_limit.rate_limit,

limit_window: self.token_limit.limit_window,

});

This is not entirely correct, however, since it is possible that self.token_limit.rate_limit or
self.token_limit.limit_window is set to None in which case the values' default values are used
instead. Looking at initialize_token_limit , it is correctly differentiating between the two cases:

emit!(RateLimitTokenSet {

token: self.mint.key(),

limit: if self.token_limit.rate_limit.is_some() {

self.token_limit.rate_limit

} else {

self.token_limit.default_user_rate_limit

},

limit_window: if self.token_limit.limit_window.is_some() {

self.token_limit.limit_window

} else {

self.token_limit.default_user_limit_window

},

});

Recommendation: Consider changing the event emission in set_token_limit to match the one in
initialize_token_limit .

Ondo Finance: Fixed in commit 4d90e674.

Cantina Managed: Fix verified.

3.5.12 Incorrect documentation of mint_usdon and burn_usdon

Severity: Informational

Context: lib.rs#L334-L345

Description: Both the mint_usdon and burn_usdon functions state that they can only be called by either
the mint or burn role.

/// Mint USDon tokens (admin function)

/// Signer must have the MINTER_ROLE_USDON role

pub fn mint_usdon(ctx: Context<USDonMinter>, amount: u64) -> Result<()> {

ctx.accounts.mint_usdon(amount, ctx.bumps.mint_authority)

}

/// Burn USDon tokens (admin function)

/// Signer must have the BURNER_ROLE_USDON role

pub fn burn_usdon(ctx: Context<USDonBurner>, amount: u64) -> Result<()> {

ctx.accounts

.burn_usdon(amount, ctx.bumps.permanent_delegate)

}

However actually they can both also be called by the ADMIN_ROLE_USDON .

Recommendation: We recommend adapting the documentation to state that ADMIN_ROLE_USDON .

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.5.13 Missing access control documentation on initialize_usdon_manager function

Severity: Informational

Context: lib.rs#L28-L50

36

https://github.com/ondoprotocol/gm-solana/commit/4d90e6743c693501de539f484dc781fbb79bae97
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L334-L345
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L28-L50

Description: The initialize_usdon_manager function is restricted so it can only be called by the
GUARDIAN_USDON .

#[account(

seeds = [RoleType::GUARDIAN_USDON, admin.key().as_ref()],

bump = roles.bump,

)]

pub roles: Account<'info, Roles>,

However compared to the other functions in lib.rs this is not documented.

/// Initialize the USDon manager state

///

/// Sets up the manager with the USDon mint, initial price, oracle configuration,

/// and vault addresses for USDC and USDon tokens.

Recommendation: We recommend adding the following comment:

/// Signer must have the GUARDIAN_USDON role

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.5.14 Incorrect role comments for sanity checker in lib.rs

Severity: Informational

Context: lib.rs#L581-L635

Description: The comments for the sanity checker functions in the lib.rs

file mention the roles SETTER_ROLE_SANITY_CHECK , ADMIN_ROLE_SANITY_CHECK

and CONFIGURER_ROLE_SANITY_CHECK . However actually the roles are called
SETTER_ROLE_ONDO_SANITY_CHECK , CONFIGURER_ROLE_ONDO_SANITY_CHECK and
ADMIN_ROLE_ONDO_SANITY_CHECK .

Recommendation: We recommend adapting the comments to show the correct roles.

Ondo Finance: Fixed in commit 7afcee22.

Cantina Managed: Fix verified.

3.5.15 rate_limit_check should use PRICE_SCALING_FACTOR

Severity: Informational

Context: token_manager.rs#L375

Description: rate_limit_check scales the amount it uses to check the rate limt using
GM_TOKEN_SCALING_FACTOR . The functions using rate_limit_check (mint_with_attestation and
redeem_with_attestation), however, scale the amount using PRICE_SCALING_FACTOR .

This means that in case the two differed, the rate limits and the actual value could deviate from each other.
Currently these two are set to the same value though, making this an informational remark.

Recommendation: Consider using the same scaling factor (PRICE_SCALING_FACTOR) in
rate_limit_check and *_with_attestation and removing GM_TOKEN_SCALING_FACTOR sicne
it's unused otherwise anyways.

Ondo Finance: Fixed in commit ebca5863.

Cantina Managed: Fix verified.

3.5.16 closer unnecessarily mutable in CloseAttestationAccount

Severity: Informational

Context: (No context files were provided by the reviewer)

37

https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L581-L635
https://github.com/ondoprotocol/gm-solana/commit/7afcee2269f80591148ac70e66e194abe03fe0cd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L375
https://github.com/ondoprotocol/gm-solana/commit/ebca586395bd9219b5fcca805fadf6509033e41d

Description: In the CloseAttestationAccount context struct, the closer is marked as mutable which
is not necessary and should be avoided if not needed.

pub struct CloseAttestationAccount<'info> {

/// The user closing the attestation account

#[account(mut)]

pub closer: Signer<'info>,

// [...]

}

Recommendation: Consider removing #[account(mut)] from the signer (closer).

Ondo Finance: Fixed in commit f7c90ce2.

Cantina Managed: Fix verified.

38

https://github.com/ondoprotocol/gm-solana/commit/f7c90ce25b95d1c70399cc173b94ef2c32cd46de

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Scope

	Findings
	Critical Risk
	Infinite mint/redeem possible through signature manipulation

	High Risk
	Privilege escalation via lamport transfer to role PDA in whitelist operations
	Unchecked confidence value allows for usage of non trustworthy oracle prices
	Too low MIN_PRICE will lead to Ondo incurring significant losses in case of a USDC depeg
	Incorrect rounding direction in mint_with_attestation

	Medium Risk
	Attestation/Token creation process can be blocked
	initialize_user allows for rate limit bypass
	Admin is not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER_ROLE_GMTOKEN role
	Value of action will be rounded down leading to bypass of limit
	Attestations can't be closed in edge case
	GM token pauser can also pause USDon due to shared mint authority and Pausable extension
	USDon UI multiplier can be modified by GM token UPDATE_MULTIPLIER_ROLE
	set_ondo_user_rate_limit uses wrong default window

	Low Risk
	Creation of attestation PDA will not account for lamport balance
	Attestation can be closed 30 seconds past creation
	Attestations can be reused by closing and recreating attestation PDAs before expiration
	Admin can't overwrite non-zero limit_window
	Restriction on multisig usage as the upgrade authority
	GM token minter bypasses token-level mint limits
	USDon token minter/burner bypasses token-level mint limits
	Non ATA usdc_vault / usdon_vault will lead to all swaps reverting
	swap_usdon_to_usdc() allows for 0 value swap
	Missing oracle-based swap pricing logic, swaps are always 1:1 despite oracle_price_enabled
	Pyth oracle sanity check ignores price exponent
	Attestation signer address is not validated
	Minting/Redeeming can not be used with non-ATA token accounts
	USDC accounts don't verify correct token program
	oracle_price_max_age not checked against MAX_AGE_UPPER_BOUND on initialization
	usdc_price_update could be zero
	Zero usdon_mint can be intialized
	USDC mint constraint is commented out in UsdcSwapContext
	GM token admin mint cannot target PDA recipients
	Incorrect mint used in swap_usdc_to_usdon
	Missing mint capabilities for AdminMintRoleGmtokenManager
	USDon guardian cannot remove roles after giving them
	Several defined roles are unused in the Solana program
	Defined but unused error codes indicate missing or incomplete validations
	init_usdon_roles misses RoleGranted event
	Sanity checker can be initialized with zero last_price
	mint is missing token program check
	Users will loose up to 999 lamports of USDon on each USDC redemption
	Type conversion can lead to unexpected behavior
	Signature verification has more restrictions than intended

	Informational
	Role initializing/closing is dependent on mutability of program
	Tokens with transfer-allowed == false can still be transferred
	Misleading is_paused parameter name for enable_oracle_price
	Incorrect documentation of PauseGmToken
	Incorrect documentation of MAX_SECONDS_EXPIRATION
	Incorrect documentation of GmTokenManagerAdminGlobalPauser
	trading_hours_offset missing in initialize_gmtoken_manager comment
	Metadata update authority set to program PDA but no update path implemented
	Unnecessary role checks for AdminRoleGmtokenManager
	Incorrect comment in sanity checker
	Incorrect event emission in set_token_limit
	Incorrect documentation of mint_usdon and burn_usdon
	Missing access control documentation on initialize_usdon_manager function
	Incorrect role comments for sanity checker in lib.rs
	rate_limit_check should use PRICE_SCALING_FACTOR
	closer unnecessarily mutable in CloseAttestationAccount

