CAMNTINM

Ondo: GM Sola

Security Review

Cantina Managed review by:
J4X, Lead Security Researcher

Mario Poneder, Security Research
N4nika, Security Researcher

December 18, 2025

Contents

1 Introduction 2
1.1 About Cantina o e e e e e 2
1.2 Disclaimer 2
1.3 Riskassessment e e 2

1.3.1 Severity Classification e 2

2 Security Review Summary 3
2.7 SCOPE . . e e e 3

3 Findings 5
3.1 Critical Risk . . . o o e 5

3.1.1 Infinite mint/redeem possible through signature manipulation. 5
3.2 High Risk . . . e 6
3.2.1 Privilege escalation via lamport transfer to role PDA in whitelist operations 6
3.2.2 Unchecked confidence value allows for usage of non trustworthy oracle prices .. 7
3.2.3 Toolow MIN PRICE will lead to Ondo incurring significant losses in case of a USDC
dePeE . . o o e 8
3.2.4 Incorrect rounding direction in mint with attestation 8
3.3 MediumRisk . . . o e e 9
3.3.1 Attestation/Token creation processcanbeblocked 9
3.3.2 initialize user allowsforratelimitbypass. 10
3.3.3 Adminis not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER ROLE GMTOKEN
FOle o e e 11
3.3.4 Value of action will be rounded down leading to bypass of limit 11
3.3.5 Attestationscan'tbeclosedinedgecase 11
3.3.6 GM token pauser can also pause USDon due to shared mint authority and Pausable
eXteNSION e 12
3.3.7 USDon Ul multiplier can be modified by GM token UPDATE_MULTIPLIER ROLE ... 12
3.3.8 set ondo user rate limit useswrongdefaultwindow 13
3.4 LOWRISK . . o e 14
3.4.1 Creation of attestation PDA will not account for lamport balance. 14
3.4.2 Attestation can be closed 30 seconds pastcreation 14
3.4.3 Attestations can be reused by closing and recreating attestation PDAs before expiration 14
3.4.4 Admin can't overwrite non-zero limit window 16
3.4.5 Restriction on multisig usage as the upgrade authority 16
3.4.6 GM token minter bypasses token-level mint limits 17
3.4.7 USDon token minter/burner bypasses token-level mint limits. 18
3.4.8 Non ATA usdc vault / usdon_vault will lead to all swaps reverting 18
3.49 swap usdon to usdc() allowsforOvalueswap 19
3.4.10 Missing oracle-based swap pricing logic, swaps are always 1:1 despite
oracle price enabled e 19
3.4.11 Pyth oracle sanity check ignores price exponent 20
3.4.12 Attestation signer addressisnotvalidated 20
3.4.13 Minting/Redeeming can not be used with non-ATA token accounts 21
3.4.14 USDC accounts don't verify correct token program oL 21
3.4.15 oracle price max_age not checked against MAX_AGE_UPPER BOUND on initializa-
BON o o e 22
3.4.16 usdc_price update couldbezero 22
3.4.17 Zero usdon mint canbeintialized 23
3.4.18 USDC mint constraint is commented out in UsdcSwapContext 23
3.4.19 GM token admin mint cannot target PDA recipients 24
3.4.20 Incorrect mintused in swap_usdc_to usdon, 24
3.4.21 Missing mint capabilities for AdminMintRoleGmtokenManager 24
3.4.22 USDon guardian cannot remove roles after givingthem 25
3.4.23 Several defined roles are unused in the Solanaprogram 25
3.4.24 Defined but unused error codes indicate missing or incomplete validations 26
3.4.25 init usdon_roles misses RoleGranted event 27
3.4.26 Sanity checker can be initialized with zero last price 27
3.4.27 mint is missing token programcheck oo 27

3.5

3.4.28 Users will loose up to 999 lamports of USDon on each USDC redemption
3.4.29 Type conversion can lead to unexpected behavior
3.4.30 Signature verification has more restrictions thanintended
Informational
3.5.1 Roleinitializing/closing is dependent on mutability of program
3.5.2 Tokenswith transfer-allowed == false canstillbetransferred
3.5.3 Misleading is paused parameter name for enable oracle price
3.5.4 Incorrect documentation of PauseGmToken
3.5.5 Incorrect documentation of MAX_ SECONDS EXPIRATION
3.5.6 Incorrect documentation of GmTokenManagerAdminGlobalPauser
3.5.7 trading _hours offset missingin initialize gmtoken manager comment . .
3.5.8 Metadata update authority set to program PDA but no update path implemented . .
3.5.9 Unnecessary role checks for AdminRoleGmtokenManager
3.5.10 Incorrect commentin sanity checker o
3.5.11 Incorrect event emission in set token limit
3.5.12 Incorrect documentation of mint _usdon and burn usdon
3.5.13 Missing access control documentation on initialize usdon_manager function. .
3.5.14 Incorrect role comments for sanity checkerin lib.rs
3.5.15 rate_limit check should use PRICE_SCALING FACTOR
3.5.16 closer unnecessarily mutable in CloseAttestationAccount

1 Introduction

1.1 About Cantina

Cantina is a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High
findings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be
fixed as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings are a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not impact
the project’s overall security (Gas and Informational findings).

https://cantina.xyz

2 Security Review Summary

Ondo's mission is to make institutional-grade financial products and services available to everyone.

From Nov 20th to Dec 2nd the Cantina team conducted a review of gm-solana on commit hash 3f96676f.
The team identified a total of 59 issues:

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 1 1 0
High Risk 4 4 0
Medium Risk 8 8 0
Low Risk 30 30 0
Gas Optimizations 0 0 0
Informational 16 15 1
Total 59 58 1
2.1 Scope

The security review had the following components in scope for gm-solana on commit hash 3f96676f:

programs/ondo-gm
— Cargo.toml
— proptest-regressions
L— instructions
L— token manager.txt

— constants.rs

— errors.rs

— events.rs

— instructions

— close attestation account.rs

— gm_token admin operations.rs

— gm_token factory admin operations.rs
— gm_token manager_admin_operations.rs
— initialize user.rs

— mod.rs

— role operations.rs

— sanity checker_admin_operations.rs
— token factory.rs

— token_limit_admin_ operations.rs
— token_manager.rs

— update scaled ui multiplier.rs
— usdc_swap_context.rs

— usdon_admin_operations.rs

— usdon_manager_admin_operations.rs
— usdon _swap context.rs

L— whitelist operations.rs

— Llib.rs

— state

— attestation.rs

— gmtoken manager state.rs

— mod.rs

— ondo_user.rs

— roles.rs

— sanity check.rs

— token_limit.rs

— usdon_manager _state.rs

https://github.com/ondoprotocol/gm-solana
https://github.com/ondoprotocol/gm-solana/tree/3f96676f8c3f8c267a4cd51bc7dd95e7c64e1857/
https://github.com/ondoprotocol/gm-solana
https://github.com/ondoprotocol/gm-solana/tree/3f96676f8c3f8c267a4cd51bc7dd95e7c64e1857/

| L— whitelist.rs
L— utils
— capacity.rs
— decimals.rs

F— mod.rs

L— mul div.rs
L— Xargo.toml

3 Findings

3.1 Critical Risk

3.1.1 Infinite mint/redeem possible through signature manipulation
Severity: Critical Risk

Context: token_manager.rs#L250-L300

Description: The ondo protocol uses attestations to ensure that no unrestricted minting is possible. With
each call to “.

The table below is taken from the official solana_secp256k1_program documentation

Index Bytes Type Description

0 2 ul6 signature offset — offset to 64-byte signature plus 1-byte recovery ID.

2 1 u8 signature offset instruction index — within the transaction, the index
of the transaction whose instruction data contains the signature.

3 2 ul6 eth address offset — offset to 20-byte Ethereum address.

5 1 u8 eth address instruction_ index — within the transaction, the index of the
instruction whose instruction data contains the Ethereum address.

6 2 ul6 message data offset — offset to start of message data.

2 ul6 message data size — size of message data in bytes.
10 1 u8 message instruction index — within the transaction, the index of the in-

struction whose instruction data contains the message data.

In this table, we can see that each part of the struct also has a corresponding instruction index.
However, looking at the code below, we can see that these are ignored during parsing and never checked
afterward.

// Parse offsets (all ul6 are little-endian):

let sig off = ul6::from le bytes([data[rd], datalrd + 1]]) as usize;

let eth off = ul6::from le bytes([data[rd + 3], datalrd + 4]]) as usize;
let msg off = ul6::from le bytes([data[rd + 6], datalrd + 7]]) as usize;
let msg len = ul6::from le bytes([datal[rd + 8], datalrd + 9]]) as usize;
msg! (

" Sig offset: {}, ETH offset: {}, Message offset: {}, length: {}",

sig off,

eth off,

msg_off,

msg_len

)

require! (msg_len == 32, SecpError::WrongDigestlLen);

require! (msg_off + msg len <= data.len(), SecpError::MalformedSecpIx);
require! (eth off + 20 <= data.len(), SecpError::MalformedSecpIx);

As a result, the secp instruction could contain the intended digest. However, the actual verification
performed by the secp256kl program was based on data from a prior instruction. This prior instruction
can be an instruction to a user-controlled program that contains a digest, a valid signature of the digest by
the attacker, and the attacker's eth address at the same offsets as in the secp256k1l program. This way,
both would pass, and the program would mint, while no actual signing happened at all.

Proof of Concept: An exemplary attack could look like this. The user creates a custom program that
accepts any input. He structures a batch of instructions as follows:

IX-Index program [content

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L250-L300
https://docs.rs/solana-secp256k1-program/latest/solana_secp256k1_program/

0 usersCustomProgram acceptAllInputIx 1: Signature of
randomMessage32Bytes by
attackerEthAddress. 2:
attackerEthAddress. 3: ran-
domMessage32Bytes. The parts
need to be spaced according to the
offsets specified in the table above

1 secp256k1_program secp256k1l This will contain a header with some
variable offsets, and for each of the
parts, the instruction_ index will
point to IX0. In the instructions data,
the correct digest and eth pubkey of
ondo must be placed at the correct
offsets, the signature can be any value
as it will never be checked

2 ondo-gm mint with attestation This will pass as secp256kl passed
and contained the correct digest and
eth address within its ix data

By using this bundled IX, the attacker can mint/redeem as often as they want without any attestations.

Recommendation: We recommend ensuring that the instruction indexes equal the instruction cur-
rently being checked.

Ondo Finance: Fixed in commit 12e4d3c1. We'll only support “inline” mode, the secp256k1 instruction
must reference itself and must contain all calldata. There must be at least one instruction containing a
valid signature for the message digest calculated in the program, and the recovered ETH address must
match what's stored in state.

Cantina Managed: Fix verified.

3.2 High Risk

3.2.1 Privilege escalation via lamport transfer to role PDA in whitelist operations
Severity: High Risk

Context: whitelist_operations.rs#L12-L62, whitelist_operations.rs#L69-L116

Description: The AddToWhitelist and RemoveFromwWhitelist instructions in
whitelist operations.rs use UncheckedAccount for role validation, allowing privilege esca-
lation by sending SOL to a precomputed PDA address. Implementation details:

#[account (
seeds = [RoleType::ADMIN ROLE WHITELIST, admin.key().as ref()1,
bump

)1
pub role account: UncheckedAccount<'info>,

// In function:
require gt!(self.role account.lamports(), 0, ErrorCode::ConstraintAddress);

Anchor's UncheckedAccount with seeds only validates the address, not ownership or data. Furthermore,
the code only checks lamports, not whether it's a valid Roles account. Attack path and impact:
1. Attacker precomputes their role PDA address:

findProgramAddressSync([b"AdminRoleWhitelist", attacker.key()], programId)

2. Attacker sends SOL to that address (simple transfer, no account creation needed).
3. Attacker has now gained ADMIN ROLE WHITELIST privileges.

https://github.com/ondoprotocol/gm-solana/commit/12e4d3c1492a28a1cc2022d68d0c3695a3f61bf5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/whitelist_operations.rs#L12-L62
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/whitelist_operations.rs#L69-L116

This results in full control over the mint/redeem operations by whitelisting malicious/sanctioned addresses
or removing genuine addresses from the whitelist at will, effectively bypassing compliance controls and
user rate limiting, as well as blocking users from swapping.

Furthermore, the attacker can steal rent by closing Whitelist accounts, which is 0.12 USD at the current
price, i.e. 120k USD per million whitelisted users.

Recommendation: It is recommended to change role account from UncheckedAccount to
Account<Roles>, e.g.:

/// The Roles account verifying the admin has ADMIN ROLE WHITELIST
/// # PDA Seeds

/// - ADMIN ROLE WHITELIST

/// - Admin's address

#[account (
seeds = [RoleType::ADMIN ROLE WHITELIST, admin.key().as ref()],
bump,

)1

pub roles: Account<'info, Roles>, // Changed from UncheckedAccount

Ondo Finance: Fixed in commit f4620ef0.

Cantina Managed: Fix verified.

3.2.2 Unchecked confidence value allows for usage of non trustworthy oracle prices
Severity: High Risk
Context: token_manager.rs#L718-L738

Description: The protocol uses the Pyth oracle to ensure that no USDC depeg above 10% has happened
when minting USDon for USDC.

let usdc_price = match usdc_price update info.key() {
USDC_PYTH_ORACLE_ADDRESS => {
// Fetch the feed ID for the USDC token price from its hex representation.
let usdc feed id: [u8; 32] = get feed id from hex(USDC PYTH ID)?;

// Deserialize “usdc price update info account data into PriceUpdateV2 struct
let data = usdc_price update _info.try borrow data()?;

let usdc price update data = PriceUpdateV2::try deserialize(&mut &data[..])?;

// Retrieve current USDC/USD price from Pyth oracle with freshness validation

// This ensures we're using recent price data to prevent stale price attacks
usdc_price update data
.get _price no older_ than(
&Clock: :get()?,
self.usdon_manager state.oracle price max_age,
&usdc_feed id,
)?
.price
}
_ => return err!(0OndoError::UsdcOracleNotImplemented),

+

// Validate that USDC price is above minimum threshold
require gte!(usdc_price, MIN PRICE, OndoError::UsdcBelowMinimumPrice);

The get price no older than() function will return a Price struct.

/// A Pyth price.
/// The actual price is " (price + conf)* 107exponent’. “publish time® may be used to
- check the recency of the price.
#[derive(PartialEq, Debug, Clone, Copy)]
pub struct Price {
pub price: i64,
pub conf: u64,

https://github.com/ondoprotocol/gm-solana/commit/f4620ef03cc4f4dda62d6c5692e6e7ffb52611b2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L718-L738

pub exponent: 132,
pub publish time: i64,
}

In this struct the conf value means how far the confidence interval out of all the reported prices ranges.
If this value is high it indicates a non clear price. As a result this price should not be trusted if the value
passes a chosen threshold.

This could lead to a non trustworthy price being used to still mint USDon while USDc might have deppeged
significantly more severely.

Recommendation: We recommend checking the confidence value to be less than a value fitting the
intended risk profile (5% is recommended in some tutorials).

Ondo Finance: Fixed in commit aeeb2fle.

Cantina Managed: Fix verified.

3.2.3 Too low MIN_PRICE will lead to Ondo incurring significant losses in case of a USDC depeg
Severity: High Risk
Context: (No context files were provided by the reviewer)

Description: The protocol implements safeguards to protect itself against a potential USDC depeg. Before
interactions using USDC, the current Pyth price of USDC is fetched and checked to ensure it is not lower
than MIN_PRICE.

// Validate that USDC price is above minimum threshold
require gte!(usdc_price, MIN_PRICE, OndoError::UsdcBelowMinimumPrice);

MIN PRICE is currently set to 90c.

/// Minimum price threshold for USDC (in scaled units)
pub const MIN PRICE: i64 = 90 000 000;

However, as a result, this will allow people to mint tokens for a potentially undercollateralized depegged
USDC token until its price has crashed by 10%, which will take time. Especially for a high liquidity token like
USDC, this price dump will take even longer.

As a result, this very low MIN PRICE will allow for minting of USDon/GM for depegged USDC at a 1:1 ratio
for a far longer than needed time.

Recommendation: We recommend setting MIN PRICE significantly closer to 1 USD to ensure early
pausing in the event of a depeg.

Ondo Finance: Fixed in commit c021a80e.

Cantina Managed: Fix verified.

3.2.4 Incorrect rounding direction in mint_with_attestation
Severity: High Risk
Context: (No context files were provided by the reviewer)

Description: In mint_with attestation, the amount the user has to pay is calculated based on price
and amount. This calculation incorrectly rounds down, causing the user to pay less than he needs to. The
affected operations are the mul_div in the function's true case:

let amount sent = mul div(price, amount, PRICE SCALING FACTOR as u64)?;

as well as both mul _div and normalize decimals inthe false case:

let normalized amount =
normalize decimals(amount, ctx.mint.decimals, usdc_mint decimals)?;

https://github.com/ondoprotocol/gm-solana/commit/aeeb2f1e0f6879d7f558a1cfba4fb33d4b261528
https://github.com/ondoprotocol/gm-solana/commit/c021a80e32bb98bb2d7a1bba340db3ee5768e603

// Calculate the amount of USDC to be sent based on the price
let amount sent = mul div(price, normalized amount, PRICE SCALING FACTOR as u64)?;

The impact is very miniscule in the true case (but still incorrect and needs to be fixed). In the false case,
however, especially the rounding of normalize decimals can be exploited in edge cases.

The highest impact can be achieved when a user buys a very small amount of a very expensive stock.
Looking at the ondo dashboard, the most expensive stock is MELIon at a price of approximately
2000 USD / share. Assuming any stocks may be added to ondo in the future, however, a very ex-
pensive example would be BRK-A at a price of approximately 760000 USD / share.

Breaking down the calculation of amount_sent yields the following:

normalized amount = amount / (10**3)
amount sent = (price * normalized amount) / 1e9
Taking the following values showcases the worst case senario:
* amount = 1999.
* price = 760000 * 1e9.
This yields the following results:
* With rounding:
normalized amount = 1999 / 10**3 = 1.999 => 1
amount_sent = (760000*1e9 * 1) / 1e9 = 760000 = 0.76 USD
+ Without rounding:
normalized amount = 1999 / 10**3 = 1.999
amount_sent = (760000*1e9 * 1.999) / 1e9 = 1519240 = 1.51924 USD
As we can see, rounding down when normalizing the amount can lead to up to a 50% loss in the worst
case.

Summarized, the rounding can lead to the loss of 1 millionth of a share. With very highly priced shares
this can become quite significant. It's important to note though, that the permissioned nature of the
protocol (requiring attestations to mint) greatly reduces the exploitability.

Recommendation: Consider rounding up instead of down in the mentioned cases.

Specifically, in the true case, the mul _div should round up. In the false case, however it would make
sense to first calculate the amount_sent and only afterwards normalize the decimals and round up
there. This would minimize rounding errors since the mul_div after normalize decimals increases
the inaccuracy.

This is because the operations are currently: divide, multiply, divide and division before multipli-
cation is advised against.

Reordering the operations would yield: multiply, divide, divide.
Ondo Finance: Fixed in commit 3b071a32.

Cantina Managed: Fix verified.

3.3 Medium Risk

3.3.1 Attestation/Token creation process can be blocked
Severity: Medium Risk

Context: token_manager.rs#L77-1.84

Description: Both the init mint internal as well asthe initialize attestation account use
the create account() function. Below, one can see the implementation of create account() inthe
Solana program:

10

https://github.com/ondoprotocol/gm-solana/commit/3b071a32b30f12abb306d16bddd1107400b3b957
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L77-L84
https://github.com/solana-labs/solana/blob/7700cb3128c1f19820de67b81aa45d18f73d2ac0/programs/system/src/system_processor.rs#L145

fn create _account(
from account index: IndexOfAccount,
to_account_index: IndexOfAccount,
to_address: &Address,
lamports: u64,
space: ub64,
owner: &Pubkey,
signers: &HashSet<Pubkey>,
invoke context: &InvokeContext,
transaction context: &TransactionContext,
instruction context: &InstructionContext,
) -> Result<(), InstructionError> {
// if it looks like the “to" account is already in use, bail
{
let mut to = instruction context
.try borrow instruction_account(transaction context, to_account index)?;
if to.get lamports() > 0 {
ic_msg!(
invoke context,
"Create Account: account {:?} already in use",
to_address
);
return Err(SystemError::AccountAlreadyInUse.into());

}

Since this will return an error if the account holds any lamports, an attacker can precompute the attesta-
tion/mint PDA's address and send the minimum amount of lamports needed for an empty account to it.
This is about 0.001 sol or about 12c at the current price. As a result, all calls to create these will revert.

Recommendation: We recommend using allocate, transfer, and assign manually to prevent this.
Ondo Finance: Fixed in commit 96c2c9ba.

Cantina Managed: Fix verified.

3.3.2 initialize_user allows for rate limit bypass

Severity: Medium Risk
Context: initialize_user.rs#L45-L46

Description: When a user tries to mint/redeem tokens the initialize ondo_user will be called and
set the default limits for the user.

#[inline(always)]
pub fn initialize ondo user(&mut self, bump: u8) -> Result<()> {
if self.ondo user.owner != self.user.key() {

self.ondo _user.owner = self.user.key();
self.ondo user.mint = self.mint.key();
self.ondo user.rate limit = self.token limit account.default user rate limit;
self.ondo user.limit window = self.token limit account.default user limit window;
self.ondo_user.mint capacity used = Some(0);
self.ondo_user.mint_last updated = None;
self.ondo _user.redeem capacity used = Some(0);
self.ondo_user.redeem_last updated = None;
self.ondo_user.bump = bump;

msg! ("User initialized");

}

0k(())
}

So if the owner was already set, no limits will be set. This leads to an issue as anyone can create a user
account and set the owner using initialize user. This instruction also allows the user to set his limits
to the max and not have any limits at all.

11

https://github.com/ondoprotocol/gm-solana/commit/96c2c9ba3520cf6fd4d7d35463f315b6758fd016
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/initialize_user.rs#L45-L46

Recommendation: We recommend restricting the initialize user ix to admins, or instead of allowing
custom rate limits use the defaults.

Ondo Finance: Fixed in commit d4244f49.

Cantina Managed: Fix verified.

3.3.3 Adminis not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER_ROLE_GMTOKEN role

Severity: Medium Risk
Context: gm_token_admin_operations.rs#L68-L71

Description: The ADMIN ROLE GMTOKEN should be able to grant the roles MINTER ROLE GMTOKEN,
PAUSER ROLE GMTOKEN, and UNPAUSER ROLE GMTOKEN through the add gmtoken role function.

require! (
matches!(role, RoleType::MinterRoleGmtoken),
OndoError::InvalidRoleType

)

However due to the check seen above, the admin can only grant one of the three.

Recommendation: We recommend also allowing for the granting of the PAUSER_ROLE_GMTOKEN and
UNPAUSER ROLE_GMTOKEN role.

Ondo Finance: Fixed in commit 0de40882.

Cantina Managed: Fix verified.

3.3.4 Value of action will be rounded down leading to bypass of limit

Severity: Medium Risk
Context: token_manager.rs#L375

Description: To calculate the USD value of a mint/redeem, the rate limit check function calculates
(price * tokenAmount) / priceScale.

fn rate limit check(
&mut self,
price: u64,
token_amount: u64,
current _timestamp: i64,
is buy: bool,
) -> Result<()> {
let amount = mul div(price, token amount, GM TOKEN SCALING FACTOR)?;

However as this uses div it will round down by up to one USD per interaction. As a result mints/redeems
with a value below 1USD will not affect the limits at all and all others will be rounded down, leading to
more minting being possible than actually intended.

Recommendation: We recommend rounding up in the calculation.
Ondo Finance: Fixed in commit 3b071a32.

Cantina Managed: Fix verified.

3.3.5 Attestations can't be closed in edge case

Severity: Medium Risk

Context: (No context files were provided by the reviewer)

Description: The protocol implements two mechanisms to close attestation accounts.

#[account(
mut,
address = attestation.creator

12

https://github.com/ondoprotocol/gm-solana/commit/d4244f49306269eba85b61729c2f82ea5985fc49
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L68-L71
https://github.com/ondoprotocol/gm-solana/commit/0de408826f08edcaf9ba85a61100dacbc74effd5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L375
https://github.com/ondoprotocol/gm-solana/commit/3b071a32b30f12abb306d16bddd1107400b3b957

)1
pub recipient: SystemAccount<'info>,

However, both of these require the attestation.creator to be a system account. This leads to issues
if a PDA without data created an attestation. In that case, the attestation can be created; however, it can't
be closed, as all calls to the close functions will revert. This will cause the rent funds to get stuck.

Recommendation: We recommend setting the recipient to an unchecked account.
Ondo Finance: Fixed in commit 60aad84c.

Cantina Managed: Fix verified.

3.3.6 GM token pauser can also pause USDon due to shared mint authority and Pausable extension

Severity: Medium Risk
Context: gm_token_admin_operations.rs#L254-1.293, gm_token_admin_operations.rs#L327-L366

Description: The PauseGmToken instruction is intended to pause GM token mints, but its constraints allow
it to pause any Token-2022 mint whose authority is the shared MINT_AUTHORITY SEED PDA. Therefore,
a holder of PAUSER ROLE_GMTOKEN can call pause token with mint = usdon mint and successfully
pause USDon as well. This contradicts the intended role-based access control separation.

Recommendation: It is recommended to restrict PauseGmToken (and the corresponding
ResumeGmToken) to exclude the USDon mint explicitly, for example by adding a constraint tying
in USDonManagerState:

#[account (
mut,
mint::authority = mint_authority,
mint::token program = token program,
constraint = mint.key() != usdon manager state.usdon mint @
— OndoError::InvalidInputMint,

)1
pub mint: InterfaceAccount<'info, Mint>;

#[account(
seeds = [USDON_MANAGER STATE SEED],
bump = usdon_manager state.bump,

)1
pub usdon_manager state: Account<'info, USDonManagerState>;

Ondo Finance: Fixed in commit 6494c563.

Cantina Managed: Fix verified.

3.3.7 USDon Ul multiplier can be modified by GM token UPDATE_MULTIPLIER_ROLE

Severity: Medium Risk
Context: update_scaled_ui_multiplier.rs#L12-L45

Description: The UpdateScaledUiMultiplier instruction isintended to adjust the ScaledUiAmount
multiplier for GM tokens, but its constraints allow the same role to change the Ul multiplier for USDon as well,
because USDon and GM tokens share the same MINT AUTHORITY SEED PDA as mint authority. Therefore,
any holder of UpdateMultiplierRole can call update scaled ui multiplier on the USDon mint.

Implications:

* The displayed value of USDon in wallets, dashboards, and internal tools that respect the
ScaledUiAmount multiplier can be arbitrarily skewed, even though the raw on-chain balances
don't change. This can:

- Confuse users and operators about actual USDon amounts.

- Make balances appear larger/smaller in some Uls, impacting perceived solvency or P&L.

13

https://github.com/ondoprotocol/gm-solana/commit/60aad84cb8f3dbb3c223eb203171b6c7ff36ae11
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L254-L293
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L327-L366
https://github.com/ondoprotocol/gm-solana/commit/6494c563caa805150babb14b7f523f7dd06efdc9
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/update_scaled_ui_multiplier.rs#L12-L45

- Complicate off-chain accounting and reconciliation if some systems use scaled amounts and
others use raw base units.

* It contradicts the spec which positions UpdateMultiplierRole as a GM-token-only concern.

Recommendation: It is recommended to restrict UpdateScaledUiMultiplier so it cannot target the
USDon mint, for example by adding a constraint and state account:

#[account(
mut,
mint::authority = mint _authority,
mint::token program = token program,
constraint = mint.key() != usdon manager state.usdon mint @
< OndoError::InvalidInputMint,

)1
pub mint: InterfaceAccount<'info, Mint>;

#[account(
seeds = [USDON_MANAGER STATE SEED],
bump = usdon manager state.bump,

)1
pub usdon_manager state: Account<'info, USDonManagerState>;
Ondo Finance: Fixed in commit 6494c563.

Cantina Managed: Fix verified.

3.3.8 set_ondo_user_rate_limit uses wrong default window

Severity: Medium Risk
Context: (No context files were provided by the reviewer)

Description: When the set_ondo_user rate limit function is called, and no limit window is set for
the user, the DEFAULT LIMIT WINDOW constantis used.

pub fn set ondo user rate limit(&mut self, rate limit: u64) -> Result<()> {
// Set the rate limit field
self.ondo_user.rate limit = Some(rate limit);

// If limit window is not set or is zero, use default 3600 seconds (1 hour)

if self.ondo user.limit window.is none() || self.ondo user.limit window == Some(0) {
self.ondo user.limit window = Some(DEFAULT LIMIT WINDOW);

}

However, this is potentially the wrong value, as for each gmtoken, a default user limit window can
be defined in its TokenLimit account.

// Default user limit window for this token

pub default user limit window: Option<u64>,

Recommendation: We recommend adapting the code as follows:

// If limit window is not set or is zero, use default 3600 seconds (1 hour)
if self.ondo user.limit window.is none() || self.ondo user.limit window == Some(0) {
if token limit.default user limit window.is none(){
self.ondo user.limit window = Some(DEFAULT LIMIT WINDOW);
} else {
self.ondo user.limit window = token limit.default user limit window;

}
}

Ondo Finance: Fixed in commit ebca5863.

Cantina Managed: Fix verified.

14

https://github.com/ondoprotocol/gm-solana/commit/6494c563caa805150babb14b7f523f7dd06efdc9
https://github.com/ondoprotocol/gm-solana/commit/ebca586395bd9219b5fcca805fadf6509033e41d

3.4 Low Risk
3.4.1 Creation of attestation PDA will not account for lamport balance

Severity: Low Risk
Context: token_manager.rs#L80

Description: When creating an attestation PDA, the program will transfer the minimum balance needed
for the account.

// Create the instruction to create the attestation account
let ix = system instruction::create_account(
&self.user.key(),
&self.attestation id account.key(),
Rent::get()?.minimum_balance(space),
space as ub4,
&crate: :ID,
);

However this doesn't account for the account potentially already holding lamports. As a result the account
might actually hold more lamports than needed.

Recommendation: We recommend only transferring enough lamports so that the minimum balance is
achieved.

Ondo Finance: Fixed in commit 96c2c9ba.

Cantina Managed: Fix verified.

3.4.2 Attestation can be closed 30 seconds past creation

Severity: Low Risk
Context: close_attestation_account.rs#L52-L58, close_attestation_account.rs#L124-L129

Description: The description of close attestation account documents the following:

/// Close a single attestation account

/17

/// The attestation account must be older than 30 seconds to be closed.

/// The rent from the closed account is returned to the recipient (original creator).

However, when looking at the actual implementation, one can see that it actually only enforces.

require_gte!(
Clock::get()?.unix_timestamp,
self.attestation.created at + ATTESTATION EXPIRATION,
OndoError: :AttestationTooNew

);

So while the documentation states that for the wvalid path the require-
ment is timestamp > createdAt + 30 seconds the actual code implements
timestamp >= createdAt + 30 seconds.

Recommendation: We recommend enforcing > instead of >=.
Ondo Finance: Fixed in commit 1b2b3e48.

Cantina Managed: Fix verified.

3.4.3 Attestations can be reused by closing and recreating attestation PDAs before expiration

Severity: Low Risk

Context: close_attestation_account.rs#L52-L58, close_attestation_account.rs#L124-L129, token_man-
ager.rs#L63-L117, token_manager.rs#L819-L833

15

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L80
https://github.com/ondoprotocol/gm-solana/commit/96c2c9ba3520cf6fd4d7d35463f315b6758fd016
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L52-L58
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L124-L129
https://github.com/ondoprotocol/gm-solana/commit/1b2b3e48145cd6b8bcdfc66f84c89cfa0ffb5ef2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L52-L58
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/close_attestation_account.rs#L124-L129
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L63-L117
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L63-L117
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L819-L833

Description: The implementation intends to prevent attestation replay by creating a unique Attestation
PDA per attestation id on first use, and rejecting subsequent uses of the same ID. However, the
combination of the attestation-closure logic and the initialization logic allows an attestation to be closed
and then reused while it is still within its expiration window.

Implementation details:

1.

Mint/Redeem path uses only expiration and does not bind it to ATTESTATION EXPIRATION.

During mint/redeem, the program enforces only:

// Check attestation expiration
require! (
current _timestamp < expiration,
OndoError::AttestationExpired
)

There is no check that expiration - current timestamp < ATTESTATION EXPIRATION, i.e.
that the actual validity window is smaller than ATTESTATION EXPIRATION.

. Attestation account creation treats "account empty” as unused.

The initialize attestation account function marks an attestation as consumed by creating a
PDA and writing an Attestation struct, but it only considers an attestation "already used” if the
account is non-empty and has lamports:

if self.attestation id account.lamports() ==
|| self.attestation_id account.data_is empty()

{
// create account and write Attestation { attestation id, creator, created at,
< bump }
// ...
Ok(())
} else {
Err(OndoError: :AttestationAlreadyUsed.into())
}

If the PDA has 0 lamports or empty data, it is treated as unused and can be recreated.
Close instructions only require 30 seconds since created at, not actual attestation expiry.

The close logic uses ATTESTATION EXPIRATION (30 seconds) only to gate when an attestation
account can be closed:

require gte!(
Clock::get()?.unix_timestamp,
self.attestation.created at + ATTESTATION EXPIRATION,
OndoError: :AttestationTooNew

);

The path does not check the attestation's expiration parameter.

Attack path and impact:

Assuming an attestation which expires > 30 seconds in the future (currently not rejected by program):

1.

Use an attestation once (mint or redeem).

2. Wait > 30 seconds (as per ATTESTATION EXPIRATION).
3.
4

. Re-use the same attestation (same attestation id, signature, price, amount, expiration)as

Close the corresponding Attestation PDA (reclaiming rent).

long as expiration is still in the future.

This contradicts the intended replay-protection semantics that should prevent double-spending. Off-chain
logic might prevent attestations expiring > 30 seconds in the future, but on-chain enforcement is still
insufficient.

Time drift between on-chain and off-chain system:

16

Additionally, note that the expiration field used to gate attestation validity is likely derived from the
off-chain quoting system's clock, not the Solana cluster's Clock sysvar. This means any clock drift or
skew between the off-chain signer and the Solana cluster can extend the effective on-chain lifetime of an
attestation beyond what is intended off-chain, further widening the window in which a closed attestation
account can be recreated and the attestation reused. Even if the off-chain system tries to enforce a short
validity window, inaccurate clocks can still result in on-chain acceptance of attestations that the off-chain
system considers expired, exacerbating the replay risk without any explicit user error.

Example: If the off-chain signer's clock is 10 seconds ahead, it might issue an attestation with
expiration = now off + 30, which on-chain looks like expiration = now on + 40. This extra 10
seconds of effective on-chain validity widens the window in which a closed attestation account can be
recreated and the same attestation reused.

Recommendation: It is recommended to enforce a maximum validity window on-chain. At
attestation use (mint/redeem), in addition to current timestamp < expiration, also check
expiration - current timestamp < ATTESTATION EXPIRATION.

Ondo Finance: Fixed in commit 1b2b3e48.

Cantina Managed: Fix verified.

3.4.4 Admin can't overwrite non-zero limit_window

Severity: Low Risk
Context: gm_token_manager_admin_operations.rs#L555-1558

Description: The set _ondo user rate 1imit() function can be used by the admin to adjust a user's
rate limits.

pub fn set ondo user rate limit(&mut self, rate limit: u64) -> Result<()> {
// Set the rate limit field
self.ondo _user.rate limit = Some(rate limit);

// If limit window is not set or is zero, use default 3600 seconds (1 hour)

if self.ondo user.limit window.is none() || self.ondo user.limit window == Some(0) {
self.ondo user.limit window = Some(DEFAULT LIMIT WINDOW);

}

// Initialize rate used fields if not already set
if self.ondo user.mint capacity used.is none() {
self.ondo user.mint capacity used = Some(0);

}
if self.ondo _user.redeem capacity used.is none(

) {
self.ondo _user.redeem capacity used = Some(0);

}
This will only allow the admin to set the limit window to the default if it is none or 0. However if the user
set it to something very low like one second, no changes can be made.
Recommendation: We recommend allowing the admin to set a custom 1imit window.
Ondo Finance: Fixed in commit bee06b2d.

Cantina Managed: Fix verified.

3.4.5 Restriction on multisig usage as the upgrade authority
Severity: Low Risk
Context: role_operations.rs#L14-L31

Description: The InitRoles context struct uses the admin as the payer for the rent used to create the
respective role account. This admin is enforced to be the upgrade authority of the program.

Since this account holds a lot of power, it is common practice to use a multisig in its place.

17

https://github.com/ondoprotocol/gm-solana/commit/1b2b3e48145cd6b8bcdfc66f84c89cfa0ffb5ef2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L555-L558
https://github.com/ondoprotocol/gm-solana/commit/bee06b2df9228a43d9d971dcc52498825f943040
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L14-L31

#[account(mut)]
pub admin: Signer<'info>,

/7 [...]

#[account(
init,
payer
space
seeds
bump

admin,
Roles::INIT SPACE,
[role.seed(), user.key().as ref()],

)]
pub roles: Account<'info, Roles>,

Solana restricts lamport transfers using the system program::transfer instruction from deducting
lamports from accounts holding data. It is important to note that anchor's payer constraint uses this
instruction to transfer lamports from the payer to the newly created account.

This means any multisig which uses data-holding accounts as the signer is not usable with the program.

Of the currently popular solana multisigs which are open source, Goki uses a PDA holding data as the
signer for multisig transactions.

Recommendation: Consider adding a separate payer account to the InitRoles struct, using it solely
to pay for the roles account's rent.

#laccount (mut)]
pub admin: Signer<'info>,

#[account(mut)]
pub payer: Signer<'info>,

/7 [...]
#[account (
init,
payer = payer,
space = Roles::INIT SPACE,

seeds = [role.seed(), user.key().as ref()],
bump

)1

pub roles: Account<'info, Roles>,

Ondo Finance: Fixed in commit c62cb0a9.

Cantina Managed: Fix verified.

3.4.6 GM token minter bypasses token-level mint limits

Severity: Low Risk
Context: gm_token_admin_operations.rs#L169-L178

Description: The GmTokenMinter: :mint_gm instruction allows any holder of MINTER_ROLE_ GMTOKEN
to mint arbitrary amounts of a GM token without enforcing the configured token-level mint limits.

In the GmTokenMinter account context.

#[account(
seeds = [TOKEN LIMIT ACCOUNT SEED, token limit account.mint.as ref()],
bump = token limit account.bump,
has one = mint @ OndoError::InvalidInputMint

)1

pub token limit account: Account<'info, TokenLimit>,

the token limit account is required and correctly bound to the mint accountvia has one = mint,
but it is never read or enforced in mint_gm.

As a result:

18

https://github.com/ondoprotocol/gm-solana/commit/c62cb0a9c2046c248677cd02041343ad83ee0ab5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L169-L178

* Any MINTER ROLE_GMTOKEN holder can mint unbounded amounts of a GM token, regardless of
configuration in the TokenLimit account.

* The presence of token _limit account in the account context gives a false sense of enforcement,
but it is effectively ignored in the logic.

* This creates a privileged-path minting bypass relative to the rate/limit controls enforced in other
flows.

Recommendation: It is recommended to load and enforce the TokenLimit configuration before calling
mint to in GmTokenMinter::mint_ gm using the same capacity/rate-limit helpers as in other flows.

Ondo Finance: Fixed in commit e0e9087e.

Cantina Managed: Fix verified.

3.4.7 USDon token minter/burner bypasses token-level mint limits

Severity: Low Risk
Context: usdon_admin_operations.rs#L121-L130, usdon_admin_operations.rs#L219-L.228

Description: Both USDonMinter::mint usdon and USDonBurner::burn_usdon require a
TokenLimit PDA in their account context, but never actually use it to enforce any limits. For
example, in the USDonMinter account context.

#[account(
seeds = [TOKEN LIMIT ACCOUNT_SEED, token limit account.mint.as _ref()],
bump = token limit account.bump,
has one = mint @ OndoError::InvalidInputMint

)1

pub token limit account: Account<'info, TokenLimit>,

the token limit account is neverread, so any holder of MINTER ROLE USDON or ADMIN ROLE USDON
(likely intended in the admin case) can mint unbounded USDon regardless of the configured TokenLimit
for that mint. The same pattern exists for USDonBurner with BURNER ROLE_USDON.

Recommendation: It is recommended to load and enforce the TokenLimit state before calling mint_to
in USDonMinter: :mint_usdon, using the same capacity/rate-limit helpers as in other flows. Apply similar
logic to USDonBurner: :burn_usdon. Reconsider if the ADMIN ROLE USDON should still be able to bypass
these limits.

Ondo Finance: Fixed in commit e0e9087e.

Cantina Managed: Fix verified.

3.4.8 Non ATA usdc_vault / usdon_vault will lead to all swaps reverting

Severity: Low Risk
Context: usdc_swap_context.rs#L139-L146

Description: Both the initialize usdon manager and set usdc_ vault functions allow for setting
the usdc_vault account to an arbitrary address.

pub fn set usdc vault(&mut self, new usdc vault: Pubkey) -> Result<()> {
// Validate the new USDC vault address
require! (
new _usdc_vault != Pubkey::default(),
OndoError: :InvalidTokenAccount
);

// Set the new USDC vault address
self.usdon_manager_ state.usdc vault = new_usdc_vault;

0k(())

19

https://github.com/ondoprotocol/gm-solana/commit/e0e9087ea918164e27d9c9cd00d0f7409e839b03
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L121-L130
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L219-L228
https://github.com/ondoprotocol/gm-solana/commit/e0e9087ea918164e27d9c9cd00d0f7409e839b03
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L139-L146

However, when the address is actually used in the UsdcSwapContext, it must be the ATA of
usdon_manager state.

/// The USDC vault storing USDC tokens received from users during swaps
#[account(
mut,
associated token::mint = usdc_mint,
associated token::authority = usdon manager state,
constraint = usdc vault.key() == usdon manager state.usdc vault
)]
pub usdc vault: Box<InterfaceAccount<'info, TokenAccount>>,

This will cause all USDC actions to revert if the usdc_vault address is set to any address other than the
ATA of usdon_manager_ state. The same issue occurs for the usdon_vault.

Recommendation: We recommend restricting initialize usdon manager, set usdc vault, and
set usdon_vault to only allow for the ATA of usdon_manager state.

Ondo Finance: Fixed in commit ef33da06.

Cantina Managed: Fix verified.

3.49 swap_usdon_to_usdc() allows for 0 value swap
Severity: Low Risk
Context: token_manager.rs#L656-L.658

Description: The swap functions are intended not to allow for zero-value swaps. To ensure this, the
following check is added at the start of both.

// Validate that input amount is greater than zero

require gt!(amount_in, 0);
However, in the swap_usdon_to usdc(), the decimal conversion will downcast any value < 1000 to O,
and thus still allow for a zero value swap while passing the first check.

// Normalize decimals from USDon (9 decimals) to USDC (6 decimals)
let normalized amount out =

normalize decimals(amount in, self.usdon mint.decimals, usdc mint.decimals)?;
Recommendation: We recommend ensuring that normalized amount out > 0 before continuing.
Ondo Finance: Fixed in commit b3160db6.

Cantina Managed: Fix verified.

3.4.10 Missing oracle-based swap pricing logic, swaps are always 1:1 despite
oracle_price_enabled

Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: The spec describes an oracle mode for USDC«USDon swaps where the exchange rate is
derived from the Pyth USDC price and a scaling factor:

price ratio = (usdc price * PRICE SCALING FACTOR) / usdon price
amount out = (amount in * price ratio) / PRICE_SCALING FACTOR
Additionally, there is a fixed mode with amount out = amount in. It also states that
oracle price enabled toggles between "oracle vs fixed pricing".
Implementation:
+ USDonManagerState exposes the expected configuration.

« The swap functions in token _manager.rs ignore the oracle price for rate calculation and always
perform a nominal 1:1 swap (only decimal-normalized).

20

https://github.com/ondoprotocol/gm-solana/commit/ef33da065c075c5dde0227ebff786bfc5af11b2c
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L656-L658
https://github.com/ondoprotocol/gm-solana/commit/b3160db6bda14d7327aacfe0d6bebb84737d1a3e

+ usdc_oracle sanity check only enforces freshness and a minimum USDC price, not a rate.
Consequences:
« Swaps are effectively always at 1:1 token units (adjusted for decimals), regardless of the oracle price.

+ oracle price enabled behavesas aboolean gate for a sanity check, not as a mode switch between
oracle and fixed pricing.

* The documented oracle-mode formula and the distinction between “oracle vs fixed” pricing are not
implemented on-chain.

Recommendation: It is recommended to implement the documented oracle-based pricing in
swap_usdc to usdon and swap usdon to usdc.

Ondo Finance: Fixed in commit 66404927.

Cantina Managed: Fix verified.

3.4.11 Pyth oracle sanity check ignores price exponent

Severity: Low Risk
Context: token_manager.rs#L718-L738

Description: In the USDC oracle sanity check, the code reads the Pyth V2 PriceUpdateV2 and uses only
the raw price field, ignoring the associated exponent:

* Pyth prices are represented as (price, expo);the real price**is price * 10™expo.

* Here, only price is compared to MIN_PRICE, assuming MIN PRICE is encoded using the same
exponent as the current USDC feed.

* This works today only because MIN PRICE was chosen to match the current
feed's exponent, but it is fragile in case of future changes. Then the comparison
require gte!(usdc price, MIN PRICE, ...) can become semantically wrong, either
failing valid prices or accepting under-priced USDC, undermining the intended price floor.

Recommendation: It is recommended to explicitly handle the price exponent when performing sanity
checks.

Ondo Finance: Fixed in commit 80979649.

Cantina Managed: Fix verified.

3.4.12 Attestation signer address is not validated

Severity: Low Risk
Context: token_manager.rs#L129-L140

Description: The attestation verification logic reads the expected Ethereum address directly from
GmTokenManagerState.attestation signer secp without checking that it has been configured to a
non-zero value:

// Get the expected Ethereum address from the gmtoken manager state
let eth_address = self.gmtoken manager state.attestation signer secp;

This field defaults to [0u8; 20] when GmTokenManagerState is first created, and there is no guard that
rejects the all-zero address. If the manager is initialized (or later updated) without setting a valid signer,
the program will still treat the state as "configured”, but no real attestation can ever pass the secp check,
effectively creating a self-inflicted DoS of all trading flows that rely on attestations.

Recommendation: It is recommended to add a validation that the address is non-zero:

require! (

eth address != [0u8; 20],

OndoError: :AttestationSignerEthAddressNotSet
)

21

https://github.com/ondoprotocol/gm-solana/commit/66404927fc6a530b72307839df3eec908ffba46d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L718-L738
https://github.com/ondoprotocol/gm-solana/commit/80979649c3e828746062d087be5af4542273e4fd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L129-L140

Ondo Finance: Fixed in commit ae36dd5b.

Cantina Managed: Fix verified.

3.4.13 Minting/Redeeming can not be used with non-ATA token accounts

Severity: Low Risk

Context: usdc_swap_context.rs#L166-L170, usdc_swap_context.rs#L166-L171, usdc_swap_con-
text.rs#L182-L187, usdc_swap_context.rs#L182-L188, usdon_swap_context.rs#L145-L150, usdon_swap_-
context.rs#L145-L151

Description: Both the UsdcSwapContext and the USDonSwapContext restrict the token accounts pro-
vided by the users to be their corresponding ATAs.

/// The user's USDon token account
#[account(

mut,

associated token::mint = usdon_mint,

associated token::authority = user,

associated token::token program = token program,
)1

pub user usdon_token_account: Box<InterfaceAccount<'info, TokenAccount>>,
This blocks users from paying with regular token accounts.

Recommendation: We recommend allowing also for non ATA accounts.

Ondo Finance: Fixed in commit e7aafec8.

Cantina Managed: Fix verified.

3.4.14 USDC accounts don't verify correct token program

Severity: Low Risk
Context: usdc_swap_context.rs#L139-L146, usdc_swap_context.rs#L166-L171

Description: Neither the user usdc_token account nor the usdc vault verifies that the SPL token
program owns them.

/// The user's USDC token account
#[account(
mut,
associated token::mint = usdc_mint,
associated token::authority = user,
)]
pub user usdc_token account: Box<InterfaceAccount<'info, TokenAccount>>,

#[account (
mut,
associated token::mint = usdc_mint,
associated token::authority = usdon manager state,
constraint = usdc vault.key() == usdon manager state.usdc vault

)1
pub usdc vault: Box<InterfaceAccount<'info, TokenAccount>>,

For all other token2022 accounts, this is implemented.
Recommendation: We recommend adding a constraint that checks the token program.
Ondo Finance: Fixed in commit e7aafec8.

Cantina Managed: Fix verified.

22

https://github.com/ondoprotocol/gm-solana/commit/ae36dd5b9be594a641c3a7e9af98336017cf928d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L170
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L171
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L187
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L187
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L182-L188
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L150
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L151
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L145-L151
https://github.com/ondoprotocol/gm-solana/commit/e7aafec8c9c6cba2a6a4a8ed23ae193f286e654d
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L139-L146
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L166-L171
https://github.com/ondoprotocol/gm-solana/commit/e7aafec8c9c6cba2a6a4a8ed23ae193f286e654d

3.4.15 oracle_price_max_age not checked against MAX_AGE_UPPER_BOUND on initialization
Severity: Low Risk
Context: usdon_manager_admin_operations.rs#L66

Description: When the oracle price max age gets updated in the set oracle price max_age
function, it is checked as follows.

// Validate the new oracle price max age
require gt!(oracle price max_age, 0, OndoError::InvalidOraclePriceMaxAge);

// Ensure it does not exceed the upper bound
require gte!(
MAX_AGE_UPPER BOUND,
oracle price_max_age,
OndoError::InvalidOraclePriceMaxAge
)

This ensures that 0 <oracle price max_age <= MAX AGE_UPPER BOUND. However, the check on ini-
tialization is only this:

require gt!(oracle price max age, 0, OndoError::InvalidOraclePriceMaxAge);

This only enforces @ <oracle price max_ age with no upper bound. As a result the price could actually
be greater than MAX_AGE_UPPER_BOUND.

Recommendation: We recommend adding a check forthe oracle price max_age <= MAX AGE_UPPER BOUND.
Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.16 usdc_price_update could be zero
Severity: Low Risk
Context: usdon_manager_admin_operations.rs#L80

Description: When updating the usdc_price update using the set usdc price update address
the program ensures that the address is not zero.

pub fn set usdc price update address(
&mut self,
new _price update address: Pubkey,
) -> Result<()> {
// Validate the new price update address
require! (
new price update address != Pubkey::default(),
OndoError::InvalidOraclePriceAddress
)

However, in the initializer, any address is passed without a check against it being zero.

// Write data to the USDonManagerState account
self.usdon_manager state.set inner(USDonManagerState {

owner: self.admin.key(),

usdon _mint,

oracle price enabled,

oracle price _max_age,

usdc_price update,

usdc_vault,

usdon_vault,

bump: bumps.usdon manager state,

1

Recommendation: We recommend verifying that the usdc_price update != Pubkey::default().

23

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L66
https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L80

Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.17 Zero usdon_mint can be intialized
Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: The initializer of the InitializeUSDonManager verifies all addresses besides the
usdon mint to be non-zero.

// Validate vault addresses

require! (
usdc_vault != Pubkey::default() && usdon_vault != Pubkey::default(),
OndoError::InvalidVault

);

// Write data to the USDonManagerState account
self.usdon_manager state.set inner(USDonManagerState {

owner: self.admin.key(),

usdon_mint,

oracle price_enabled,

oracle price max age,

usdc_price update,

usdc_vault,

usdon_vault,

bump: bumps.usdon _manager state,

b

This could allow for accidentally intializing the account with a 9 mint, which also couldn't be changed post
deployment.

Recommendation: We recommend checking that usdon_mint != 0 in the intializer.
Ondo Finance: Fixed in commit e0002566.

Cantina Managed: Fix verified.

3.4.18 USDC mint constraint is commented out in UsdcSwapContext
Severity: Low Risk
Context: usdc_swap_context.rs#L158-L163

Description: In the USDC swap context, the usdc_mint accountisintended to be constrained to the USDC
mint on mainnet, but the constraint is commented out with a "remember to uncomment for mainnet”
comment:

/// The USDC mint (SPL Token)

#[account (
mint::token program = spl token program,
//constraint = usdc_mint.key() == USDC_MINT uncomment for mainnet (use for
< devnet/testnet)

)1
pub usdc_mint: Box<InterfaceAccount<'info, Mint>>,

This relies on a manual code edit to enforce the correct USDC mint, which is error-prone and easy to forget,
especially across deployments or refactors.

Recommendation: It is recommended to replace the commented constraint with a compile-time configu-
ration using Cargo features or explicit environment flags. For example:

#[account(
mint::token program = spl token program,
#[cfg(feature = "mainnet")]
constraint = usdc_mint.key() == USDC _MINT @ OndoError::InvalidUsdcMint

24

https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://github.com/ondoprotocol/gm-solana/commit/e0002566ac166b2fe140b4d9230b1c2e45f47522
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L158-L163

)]
pub usdc_mint: Box<InterfaceAccount<'info, Mint>>;
Ondo Finance: Fixed in commit ff7c68dd.

Cantina Managed: Fix verified.

3.4.19 GM token admin mint cannot target PDA recipients

Severity: Low Risk
Context: gm_token_admin_operations.rs#L151-L157

Description: The GmTokenMinter admin mintinstruction cannot mint GM tokens to PDA-owned accounts,
only to system-owned accounts. The recipient is constrained as a SystemAccount<'info>. Anchor's
SystemAccount enforces that user is owned by the system program, which PDAs (owned by the program)
are not.

Conseqguences:

+ Admins cannot mint GM tokens directly to program-owned PDAs (e.g. treasury PDAs, custodial
accounts, vaults), only to EOAs.

* Any desired minting to PDA-controlled addresses must go via an intermediate EOA + transfer, which
may conflict with operational or compliance requirements.

Recommendation: It is recommended to relax the recipient type to allow PDAs. For exam-
ple, change pub user: SystemAccount<'info> to a more general UncheckedAccount<'info> or
AccountInfo<'info> with explicit ownership checks if needed.

Ondo Finance: Fixed in commit 421ca348.

Cantina Managed: Fix verified.

3.4.20 Incorrect mint used in swap_usdc_to_usdon
Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: When swap usdc_to usdon normalizes the amount out to USDC decimals, the wrong
mint is used for to decimals.

let normalized amount out = normalize decimals(amount in, usdc_mint.decimals,
— self.mint.decimals)?;

The correct one would be self.usdon mint.decimals since the decimals are normalized from USDC to
USDon. Since the decimals of USDon and GM tokens are currently the same, the calculation still returns
the correct result but should still be fixed since it's technically incorrect.

Recommendation: Consider changing self.mint.decimals to self.usdon mint.decimals.
Ondo Finance: Fixed in commit e34b7c8b.

Cantina Managed: Fix verified.

3.4.21 Missing mint capabilities for AdminMintRoleGmtokenManager
Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: According to the documentation, the AdminMintRoleGmtokenManager is supposed to be
able to mint GM tokens.

Role Seed Capabilities

AdminMintRoleGmtokenManager b"AdminMintRoleGmtokenManager” Administrative mints

25

https://github.com/ondoprotocol/gm-solana/commit/ff7c68dddd3262e67cf2ec58862145972af6c3c2
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L151-L157
https://github.com/ondoprotocol/gm-solana/commit/421ca348ad6a7ed8444bf2b2f66201898d7b77a3
https://github.com/ondoprotocol/gm-solana/commit/e34b7c8b22dd7d94abc2170531d79684b2e36657

Looking at the GmTokenMinter context struct, however, only the MINTER ROLE_GMTOKEN role can call
mint gm:

pub struct GmTokenMinter<'info> {
/// The operator minting tokens, pays for destination account if needed
#[account(mut)]
pub operator: Signer<'info>,

#[account(
seeds = [RoleType::MINTER ROLE GMTOKEN, operator.key().as ref()],
bump = roles.bump,

)]
pub roles: Account<'info, Roles>,

/7 1.
}
Recommendation: Consider allowing the AdminMintRoleGmtokenManager to mint GM tokens.
Ondo Finance: Fixed in commit 029a3ffc.

Cantina Managed: Fix verified.

3.4.22 USDon guardian cannot remove roles after giving them

Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: Looking at how the RoleType: :MinterRoleUsdon, RoleType: : PauserRoleUsdon and
RoleType: :BurnerRoleUsdon are used, it is apparent that those roles can be granted by the
GUARDIAN USDON but not revoked by him anymore since the only instruction using these roles is
init usdon roles.

pub fn init usdon roles(&mut self, role: RoleType, bumps: & USDonInitRolesBumps) ->
< Result<()> {
require! (
matches! (
role,
RoleType: :MinterRoleUsdon | RoleType::PauserRoleUsdon |
— RoleType::BurnerRoleUsdon

),
OndoError::InvalidRoleType

/7 L]
}

Looking at all other code segments giving roles, there is always another codepath allowing removal of the
given roles except for this one.

Recommendation: Consider adding a function remove usdon_roles, allowing the guardian to take
away given roles again.

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.4.23 Several defined roles are unused in the Solana program
Severity: Low Risk
Context: roles.rs#1.22-151

Description: The Solana program defines multiple RoleType variants and seeds that are never referenced
outside roles.rs, i.e. no instruction uses them for access control or behavior:

* TokenFactoryRole.

* PauserRoleTokenManagerRegistrar.

26

https://github.com/ondoprotocol/gm-solana/commit/029a3ffc55d72600307bbcd45f6d83b8e42319b8
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/state/roles.rs#L22-L51

+ AdminRoleTokenManagerRegistrar.
+ PauseTokenRole.

+ AdminRolePauseToken.

* ComplianceOwnerRole.

* OwnerIssuanceHoursRole.

The Solana specification and the Solidity reference design both describe functionality mapped to these roles
(e.g. TokenManagerRegistrar pausing/config, compliance owner, issuance-hours owner, token-pause ad-
min), but there is no corresponding implementation on Solana. This creates a specification/implementation
gap and can mislead integrators.

Recommendation: It is recommended to decide per role whether it should be implemented or removed.

Ondo Finance: Fixed in commit 1a869cb7. Removes most unused roles, "OWNER_ISSUANCE_HOURS _-
ROLE" to be used.

Cantina Managed: Fix verified.

3.4.24 Defined but unused error codes indicate missing or incomplete validations
Severity: Low Risk
Context: errors.rs#L4-197

Description: Several error variants are defined in errors. rs but are never used anywhere else in the
Solana program. This suggests that some intended validations or safety checks are missing or only partially
implemented:

* Swap / pricing related:
InvalidOutputMint.

SlippageExceeded.

InvalidMints.

TokenSwapPaused.

+ Access control / compliance related:
- AddressAlreadyInRole.
- BlocklistNotInitialized.
- UserNotWhitelisted.

+ Attestation / signature diagnostics
- InvalidInstructionIndex.
- AttestationSignerEthAddressNotSet.
- PubkeyRecoveryFailed.
- EthAddressRecoveryFailed.
- EthAddressMismatch.
- InvalidSignatureParams.

Overall, these unused error codes show a mismatch between documented/intended behavior and what is
actually enforced on-chain, and they can mislead integrators into assuming certain protections (slippage
limits, swap-level pause, blocklist, richer signature diagnostics) exist when they do not.

Recommendation: It is recommended for each unused error to either implement the intended validation
or remove the error to reflect the actual behavior.

Ondo Finance: Fixed in commit c247ed8b.

Cantina Managed: Fix verified.

27

https://github.com/ondoprotocol/gm-solana/commit/1a869cb796fc63525c21de758e2b0c04593b2b4e
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/errors.rs#L4-L97
https://github.com/ondoprotocol/gm-solana/commit/c247ed8b706c774ef15bc5b67fed400e365da1de

3.4.25 init_usdon_roles misses RoleGranted event

Severity: Low Risk
Context: usdon_admin_operations.rs#L74
Description: All of the role setting functions emit the RoleGranted event.

// Emit event for role granted
emit! (RoleGranted {

role,

grantee: user,

granter: self.admin.key(),

});
However on the init _usdon_roles function the event is not emitted.
Recommendation: We recommend adding an emit.

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.4.26 Sanity checker can be initialized with zero last_price
Severity: Low Risk
Context: sanity_checker_admin_operations.rs#L77-L85

Description: When setting the last price of the sanity checker using set last price() itis checked that
the price needs to be greater than 0.

pub fn set last price(&mut self, last price: u64) -> Result<()> {
require! (last price > 0, OndoError::InvalidPrice);

However when initializing the sanity checker this is not checked.

// Write to the sanity check account

self.sanity check.set inner(OracleSanityCheck {
last_price,
mint: self.mint.key(),
allowed deviation bps,
max_time delay,
price last updated: Clock::get()?.unix timestamp,
bump: bumps.sanity check,

3
Recommendation: We recommend adding a check to the initializer to ensure that last _price > 0.

Ondo Finance: Fixed in commit 7afcee22.

Cantina Managed: Fix verified.

3.4.27 mint is missing token program check
Severity: Low Risk
Context: usdc_swap_context.rs#L29-L34, usdon_swap_context.rs#L28-L33

Description: Both the USDonSwapContext as well as the UsdcSwapContext include the mint account
in their context. This account is the gm token that the swap/redeem will be done for.

/// The GM Token mint involved in the swap
#[account (

mut,

mint::authority = mint _authority,
)]

pub mint: Box<InterfaceAccount<'info, Mint>>,

28

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_admin_operations.rs#L74
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/sanity_checker_admin_operations.rs#L77-L85
https://github.com/ondoprotocol/gm-solana/commit/7afcee2269f80591148ac70e66e194abe03fe0cd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdc_swap_context.rs#L29-L34
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_swap_context.rs#L28-L33

The account constraints however never check the token program of these mints. As a result a incorrect
mint could be passed. This is currently mitigated by other restrictions, but it's highly recommended to
always check the token program on every mint/token account.

Recommendation: We recommend adding a check for the token program.
Ondo Finance: Fixed in commit 4ce72532.

Cantina Managed: Fix verified.

3.4.28 Users will loose up to 999 lamports of USDon on each USDC redemption

Severity: Low Risk
Context: (No context files were provided by the reviewer)

Description: On a USDC redemption, the user is first minted the corresponding value in USDon.

mint to(
CpiContext::new with signer(
ctx.token program.to_account _info(),
MintTo {
mint: ctx.usdon mint.to account info(),
to: ctx.user _usdon_ token account.to account info(),
authority: ctx.mint _authority.to _account info(),
}I
signer_seeds,
),
mint amount,
)?;

L

Afterwards a swap will be called that will first noralize the amount to USDC decimals:

let normalized amount out = normalize decimals(amount in, self.usdon_mint.decimals,
— usdc_mint.decimals)?;

Afterwards it will draw the full mint _amount from the user and transfer him normalized amount out
of USDC.

transfer checked(
CpiContext: :new(
self.token program.to account _info(),
TransferChecked {
from: self.user usdon token account.to account info(),
mint: self.usdon mint.to account info(),
to: self.usdon vault.to account info(),
authority: self.user.to _account info(),
}I
)I
amount_in,
self.usdon mint.decimals,
)?;
// Step 2: Transfer USDC tokens from protocol vault to user
// This releases USDC from the protocol's vault to the user's account
if normalized amount out != 0 {
transfer checked(
CpiContext::new with signer(
self.spl_token program
.as_ref()
.0k _or(OndoError::TokenProgramNotProvided)?
.to_account_info(),
TransferChecked {
from: self
.usdc_vault
.as_ref()
.0k or(OndoError::InvalidTokenAccount)?
.to_account_info(),

29

https://github.com/ondoprotocol/gm-solana/commit/4ce72532b82e12191a78077a01e4443a21a75d4a

mint: usdc_mint.to account info(),
to: self
.user_usdc_token_account
.as_ref()
.0k _or(OndoError::InvalidTokenAccount)?
.to_account_info(),
authority: self.usdon manager state.to account info(),

}
&[&[USDON_MANAGER STATE SEED, &[self.usdon manager state.bump]ll],

),
normalized amount out,

usdc_mint.decimals,
)?;

’

}

This leads to the user effectively overpaying for USDC. The two tokens should be pegged at a 1:1, but in
this case, the user will lose up to 999 lamports of USDon. If, for example, the mint _amount == 1999,
the conversion would normalize this to normalized amount out == 1. However, it would draw the full
1999 lamports of USDon from the user, which would be worth 1.999 USDC. So the user would, in that
case, lose the 999 lamports of USDon to the protocol.

Recommendation: We recommend only drawing

normalize decimals(normalized amount out, usdc mint.decimals, self.usdon mint.decimals)

from the USDon vault, which will let the user keep the rounding losses.
Ondo Finance: Fixed in commit 17e9f02d.

Cantina Managed: Fix verified.

3.4.29 Type conversion can lead to unexpected behavior

Severity: Low Risk
Context: capacity.rs#L22

Description: Both the user's and any GM token's 1limit window can be set by the
ADMIN ROLE GMTOKEN_MANAGER up to u64::MAX. The problem is that setting it to any value larger than
i64: :MAX for an account will freeze any interactions with that account.

This is because in calculate capacity used, which is used by check token rate limit and
check user rate limit,the limit window is casttoan i64 and i64::try from(limit window)
errors for any value larger than 164 : :MAX:

if time since last update >= i64::try from(limit window)? {
Recommendation: Consider casting time since last update (to a u64) for the check instead of

limit window. This is safe since time since last update should never be negative in this context
anyways.

Ondo Finance: Fixed in commit 77ccb283.

Cantina Managed: Fix verified.

3.4.30 Signature verification has more restrictions than intended
Severity: Low Risk
Context: token_manager.rs#1.227-L.237

Description: The current implementation of the signature verification in verify secp256kl ix is
supposed to pass whenever there is "at least one valid secp instruction in the transaction”. Right now this
is not the case due to two bugs.

* Iterating over 20 instructions:

30

https://github.com/ondoprotocol/gm-solana/commit/17e9f02d6829f61c5503fb87bee31b8f467af1e5
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/utils/capacity.rs#L22
https://github.com/ondoprotocol/gm-solana/commit/77ccb2839c54c7bc7277110513872f67b98d1801
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L227-L237

fn verify secp256k1l ix(

&self,

ix_sysvar: &AccountInfo,

expected digest32: &[u8; 32],

expected eth address20: [u8; 201,
) -> Result<()> {

// Iterate through the instructions in the sysvar to find a matching secp256kl

— instruction

for i in 0..20 {

/7 ...
}

err!(SecpError::MissingOrMismatchedSecpIx)

}

verify secp256kl_ix iterates over a maximum of 20 instructions. Since it's technically possible
to have transactions with more than 20 instructions in solana, such a transaction would fail even if
it's valid and contains a valid secp instruction.

*+ Only first instruction considered: Looking at secp_matches, the function returns an error if the
passed instruction does not pass validation.

fn secp matches(
&self,
ix: &Instruction,
digest: &[u8; 321,
eth addr: [u8; 20],
) -> Result<bool> {
// [0
require!('data.is_empty(), SecpError::MalformedSecpIx);
require! (data[0] == 1, SecpError::WrongSigCount);

/..

require! (data.len() >= rd + 11, SecpError::MalformedSecpIx);
/...]

require! (msg len == 32, SecpError::WrongDigestlLen);

require! (msg off + msg len <= data.len(), SecpError::MalformedSecpIx);
require! (eth off + 20 <= data.len(), SecpError::MalformedSecpIx);

/7 1.0
require! (msg == digest, SecpError::DigestMismatch);
require! (eth _addr _in ix == eth_addr, SecpError::AddressMismatch);

Ok(true)
}

This means verify secp256kl ix will error if the first found secp instruction is not the one it's
looking for, even if there is a valid one later on in the instruction list.

if self.secp _matches(&ix, expected digest32, expected eth address20)? {
return 0Ok(());
}

Recommendation: Consider changing the semantics of the signature verification, enforcing that signature
instructions must be one index before the instruction they are verified in.

For example, if a transaction contains two redeem_for_usdon instructions, one at index 2 and the other
one at index 5, then the corresponding signature instructions must be at index 1 and 4 respectively. This
would simplify the signature check and allow for bundling of mints/redemptions.

Ondo Finance: Fixed in commit 9f06e4ae.

Cantina Managed: Fix verified.

31

https://github.com/ondoprotocol/gm-solana/commit/9f06e4ae549c647d2e22130dc495f085feff3379

3.5 Informational
3.5.1 Role initializing/closing is dependent on mutability of program

Severity: Informational
Context: role_operations.rs#L43-L47, role_operations.rs#L111-L115

Description: Currently the program's upgrade authority is taken as the highest authority in the program
since it is the only one capable of giving/taking admin roles.

#[account(mut)]
pub admin: Signer<'info>,

/7 L.

#[account(
constraint =
program data.upgrade authority address == Some(admin.key()) @
« OndoError::InvalidUser

)]
pub program data: Account<'info, ProgramData>,

The problem with this approach is that in case the decision is made to make the program im-
mutable, this check can never be passed anymore since making a program immutable sets its
upgrade _authority address to None.

Recommendation: In case the program will definitely never be made immutable, this is fine. If this might
be done, however, consider adding an admin role with the same privileges as the upgrade authority in
order to have the possibility to manage admin roles even if the program is made immutable.

Ondo Finance: Acknowledged. This is intentional. If a contract is ever planned to be made immutable
we will update this. On another note, all roles set by InitRoles are only really meant to be set during
deployment.

Cantina Managed: Acknowledged.

3.5.2 Tokens with transfer-allowed == false can still be transferred

Severity: Informational
Context: token_limit.rs#L36-L37

Description: The TokenLimit accountis used to constrain mints. It includes the transfers allowed
bool, which should disable transfers if set to false.

// Whether transfers are allowed for this token
pub transfers allowed: bool,
However, this value is actually never checked anywhere. Thus, transfers for tokens with this set to false
will work without any issues.
Recommendation: We recommend disabling transfers for tokens with this value set.
Ondo Finance: Fixed in commit 8cfc3326.

Cantina Managed: Fix verified.

3.5.3 Misleading is_paused parameter name for enable_oracle_price

Severity: Informational
Context: usdon_manager_admin_operations.rs#L120-L130, lib.rs#L84-L88

Description: The enable oracle price admin instruction uses a parameter named is_paused, but
it directly sets the oracle price enabled flag, which inverts the intuitive meaning of the name and is
inconsistent with the rest of the pause naming in the codebase.

In the admin implementation:

32

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L43-L47
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/role_operations.rs#L111-L115
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/state/token_limit.rs#L36-L37
https://github.com/ondoprotocol/gm-solana/commit/8cfc33264d50e442db86f7a2a9331b9e356b3895
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/usdon_manager_admin_operations.rs#L120-L130
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L84-L88

pub fn enable oracle price(&mut self, is paused: bool) -> Result<()> {
// Set the oracle price enabled state
self.usdon_manager state.oracle price enabled = is paused;

0k (())
}

and exposed from the program:

pub fn enable oracle price(ctx: Context<USDonManagerAdmin>, is paused: bool) ->
< Result<()> {
ctx.accounts.enable oracle price(is _paused)

}

Recommendation: Itis recommended to rename the parameterto e.g. oracle price enabled: bool
(and update both lib.rs and usdon_manager admin operations.rs), so the call site matches the
stored field and avoids inversion/confusion.

Ondo Finance: Fixed in commit 3e16889d.

Cantina Managed: Fix verified.

3.5.4 Incorrect documentation of PauseGmToken

Severity: Informational
Context: gm_token_admin_operations.rs#L255

Description: The comment above the PauseGmToken context states "Requires UNPAUSER ROLE_GMTOKEN
role” however actually the caller needs to hold the PAUSER ROLE_GMTOKEN role.

/// The Roles account verifying the pauser has PAUSER ROLE GMTOKEN
/// # PDA Seeds
/// - PAUSER ROLE GMTOKEN
/// - Pauser's address
#[account(
seeds = [RoleType::PAUSER ROLE GMTOKEN, pauser.key().as ref()],
bump,

)1
pub roles: Account<'info, Roles>,

Recommendation: We recommend adapting the documentation to "Requires PAUSER ROLE_GMTOKEN
role”.
Ondo Finance: Fixed in commit b9aT1ec09.

Cantina Managed: Fix verified.

3.5.5 Incorrect documentation of MAX_SECONDS_ EXPIRATION

Severity: Informational
Context: constants.rs#L53-L54

Description: The MAX SECONDS EXPIRATION constant is described as "Maximum allowed attestation
expiration time (1 year in seconds)”. However, it actually restricts the expiry of the price updates, not the
attestations.

Recommendation: We recommend adapting the comment to “"Maximum allowed price delay”.
Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

33

https://github.com/ondoprotocol/gm-solana/commit/3e16889d7846a35d207b060fdd7ba790530b4c7f
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_admin_operations.rs#L255
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/constants.rs#L53-L54
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222

3.5.6 Incorrect documentation of GmTokenManagerAdminGlobalPauser

Severity: Informational
Context: gm_token_manager_admin_operations.rs#L344-1.348

Description: The GmTokenManagerAdminGlobalPauser context's functionality is described as "/// Un-
pause subscriptions/redemptions for all GM Tokens". However, actually, the function handles both pausing
and unpausing.

Recommendation: We recommend adapting the comment to "/// Pause/Unpause subscriptions/redemp-
tions for all GM Tokens".

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

3.5.7 trading_hours_offset missingin initialize_gmtoken_manager comment

Severity: Informational
Context: gm_token_manager_admin_operations.rs#L49-L66

Description: The NatSpec comment for the initialize gmtoken_ manager function is missing a de-
scription for the trading hours offset argument.

/// Initialize the GmTokenManagerState account
/// # Arguments
/// * “factory paused® - Whether the GM Token factory should start in a paused state
/// * “redemptions paused® - Whether redemptions should start in a paused state
/// * “subscriptions paused” - Whether subscriptions should start in a paused state
/// * Tattestation signer secp’ - The secp256kl Ethereum address of the attestation
< signer (20 bytes)
/// * “bumps’ - The PDA bumps for account derivation
/// # Returns
/// * "Result<()>" - 0k if the GmTokenManagerState is successfully initialized, Err
- otherwise
pub fn initialize gmtoken _manager(

&mut self,

factory paused: bool,

redemption_paused: bool,

minting paused: bool,

attestation signer secp: [u8; 20],

trading hours offset: i64,

bumps: &InitializeGmTokenManagerBumps,
) -> Result<()> {

Recommendation: We recommend adding a description for the trading hours offset argument.

Ondo Finance: Fixed in commit b9a1ec09.

Cantina Managed: Fix verified.

3.5.8 Metadata update authority set to program PDA but no update path implemented

Severity: Informational
Context: token_factory.rs#L150-L160

Description: When deploying new mints in token factory.rs, the Token-2022 metadata is initialized
with the program's mint authority PDA as both mint authority and update authority.

However, the current codebase does not implement any CPI to update metadata, so in practice metadata
is never changed on-chain. The configuration thus sits in an ambiguous state:

+ To users, it may look like metadata is immutable.

+ To developers, it is technically upgradable by future program changes (since the program holds the
update authority PDA), even though no current path exists.

34

https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L344-L348
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/gm_token_manager_admin_operations.rs#L49-L66
https://github.com/ondoprotocol/gm-solana/commit/b9a1ec09c6847a740ddeebc067a62f23a56aa222
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_factory.rs#L150-L160

This is not an immediate exploit, but is important for understanding trust and upgrade assumptions
around token metadata.

Recommendation: It is recommended to decide explicitly whether metadata should be immutable or
upgradable by the program.

Ondo Finance: Fixed in commit 6815abc3.

Cantina Managed: Fix verified.

3.5.9 Unnecessary role checks for AdminRoleGmtokenManager
Severity: Informational
Context: token_limit_admin_operations.rs#L68-L71, token_limit_admin_operations.rs#L179-L182

Description: Both the initialize token limit and the set token limit functions enforce the
following check.

require! (
self.roles.role == RoleType: :AdminRoleGmtokenManager,
OndoError::AddressNotFoundInRole

)

However the role being the correct one is already verified based on the seed.

#[account(
seeds = [RoleType::ADMIN ROLE GMTOKEN MANAGER, admin.key().as ref()],
bump = roles.bump,

)]
pub roles: Account<'info, Roles>,

Recommendation: We recommend removing the unnecessary checks.
Ondo Finance: Fixed in commit 062b5dff.

Cantina Managed: Fix verified.

3.5.10 Incorrect comment in sanity checker

Severity: Informational

Context: sanity_checker_admin_operations.rs#L71

Description: The following check in the sanity check is described as "Validate last price”.

// Validate last price

require! (
max_time_delay <= MAX_SECONDS_EXPIRATION, // 1 year lifetime in days, to be adjusted
OndoError::InvalidMaxTimeDelay

);

However this actually validates the price delay.

Recommendation: We recommend changing this to "// Validate price delay”.

Ondo Finance: Fixed in commit 3109a7d8.

Cantina Managed: Fix verified.

3.5.11 Incorrect event emission in set_token_limit

Severity: Informational
Context: (No context files were provided by the reviewer)

Description: In set_token limit, at the end an event is emitted indicating the newly set values.

35

https://github.com/ondoprotocol/gm-solana/commit/6815abc39c063250cd3e398384ccbaa7f3bbd6a0
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_limit_admin_operations.rs#L68-L71
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_limit_admin_operations.rs#L179-L182
https://github.com/ondoprotocol/gm-solana/commit/062b5dff801e950e8fc8d8f2f22498fc3f628604
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/sanity_checker_admin_operations.rs#L71
https://github.com/ondoprotocol/gm-solana/commit/3109a7d8497f39e29ce97e7aac37a1f2b40d1515

emit! (RateLimitTokenSet {
token: self.mint.key(),
limit: self.token limit.rate limit,
limit window: self.token limit.limit window,

b

This is not entirely correct, however, since it is possible that self.token limit.rate limit or
self.token limit.limit window is set to None in which case the values' default values are used
instead. Looking at initialize token limit, itis correctly differentiating between the two cases:

emit! (RateLimitTokenSet {
token: self.mint.key(),
limit: if self.token limit.rate limit.is some() {
self.token limit.rate limit
} else {
self.token limit.default user rate limit
}’
limit window: if self.token limit.limit window.is some() {
self.token limit.limit window
} else {
self.token limit.default user limit window
}I
3

Recommendation: Consider changing the event emission in set_token 1limit to match the one in
initialize token limit.
Ondo Finance: Fixed in commit 4d90e674.

Cantina Managed: Fix verified.

3.5.12 Incorrect documentation of mint_usdon and burn_usdon

Severity: Informational
Context: |ib.rs#L334-1345

Description: Both the mint usdon and burn_usdon functions state that they can only be called by either
the mint or burn role.

/// Mint USDon tokens (admin function)

/// Signer must have the MINTER ROLE USDON role

pub fn mint usdon(ctx: Context<USDonMinter>, amount: u64) -> Result<()> {
ctx.accounts.mint_usdon(amount, ctx.bumps.mint authority)

}

/// Burn USDon tokens (admin function)
/// Signer must have the BURNER ROLE USDON role
pub fn burn usdon(ctx: Context<USDonBurner>, amount: u64) -> Result<()> {

ctx.accounts

.burn_usdon(amount, ctx.bumps.permanent delegate)

}
However actually they can both also be called by the ADMIN_ ROLE_USDON.
Recommendation: We recommend adapting the documentation to state that ADMIN ROLE USDON.
Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.5.13 Missing access control documentation on initialize_usdon_manager function

Severity: Informational
Context: lib.rs#L28-L50

36

https://github.com/ondoprotocol/gm-solana/commit/4d90e6743c693501de539f484dc781fbb79bae97
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L334-L345
https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L28-L50

Description: The initialize usdon_manager function is restricted so it can only be called by the
GUARDIAN_USDON.

#[account(
seeds = [RoleType::GUARDIAN USDON, admin.key().as ref()],
bump = roles.bump,

)1
pub roles: Account<'info, Roles>,

However compared to the other functions in 1ib. rs this is not documented.

/// Initialize the USDon manager state

/77

/// Sets up the manager with the USDon mint, initial price, oracle configuration,
/// and vault addresses for USDC and USDon tokens.

Recommendation: We recommend adding the following comment:

/// Signer must have the GUARDIAN USDON role

Ondo Finance: Fixed in commit 2f4f7ac4.

Cantina Managed: Fix verified.

3.5.14 Incorrect role comments for sanity checker in lib.rs

Severity: Informational
Context: |ib.rs#L581-L635

Description: The comments for the sanity checker functions in the 1ib.rs
file mention the roles SETTER ROLE_SANITY_ CHECK, ADMIN ROLE SANITY CHECK
and CONFIGURER ROLE_SANITY CHECK. However actually the roles are «called
SETTER ROLE ONDO SANITY CHECK, CONFIGURER ROLE ONDO SANITY CHECK and

ADMIN ROLE ONDO SANITY CHECK.
Recommendation: We recommend adapting the comments to show the correct roles.
Ondo Finance: Fixed in commit 7afcee22.

Cantina Managed: Fix verified.

3.5.15 rate_limit_check should use PRICE_SCALING_FACTOR

Severity: Informational
Context: token_manager.rs#L375

Description: rate limit check scales the amount it uses to check the rate limt using
GM _TOKEN SCALING FACTOR. The functions using rate limit check (mint with attestation and
redeem with attestation), however, scale the amount using PRICE_SCALING FACTOR.

This means that in case the two differed, the rate limits and the actual value could deviate from each other.
Currently these two are set to the same value though, making this an informational remark.

Recommendation: Consider wusing the same scaling factor (PRICE_SCALING FACTOR) in
rate limit check and * with attestation and removing GM TOKEN SCALING FACTOR sicne
it's unused otherwise anyways.

Ondo Finance: Fixed in commit ebca5863.

Cantina Managed: Fix verified.

3.5.16 closer unnecessarily mutable in CloseAttestationAccount

Severity: Informational

Context: (No context files were provided by the reviewer)

37

https://github.com/ondoprotocol/gm-solana/commit/2f4f7ac43a8c59c2e3775c7061900e70a52cbf26
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/lib.rs#L581-L635
https://github.com/ondoprotocol/gm-solana/commit/7afcee2269f80591148ac70e66e194abe03fe0cd
https://cantina.xyz/code/72d973d1-58a3-455c-a28f-ce16a34e6a06/programs/ondo-gm/src/instructions/token_manager.rs#L375
https://github.com/ondoprotocol/gm-solana/commit/ebca586395bd9219b5fcca805fadf6509033e41d

Description: In the CloseAttestationAccount context struct, the closer is marked as mutable which
is not necessary and should be avoided if not needed.

pub struct CloseAttestationAccount<'info> {
/// The user closing the attestation account
#[account(mut)]
pub closer: Signer<'info>,
/7 L]
}

Recommendation: Consider removing #[account (mut)] from the signer (closer).
Ondo Finance: Fixed in commit f7c90ce2.

Cantina Managed: Fix verified.

38

https://github.com/ondoprotocol/gm-solana/commit/f7c90ce25b95d1c70399cc173b94ef2c32cd46de

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Scope

	Findings
	Critical Risk
	Infinite mint/redeem possible through signature manipulation

	High Risk
	Privilege escalation via lamport transfer to role PDA in whitelist operations
	Unchecked confidence value allows for usage of non trustworthy oracle prices
	Too low MIN_PRICE will lead to Ondo incurring significant losses in case of a USDC depeg
	Incorrect rounding direction in mint_with_attestation

	Medium Risk
	Attestation/Token creation process can be blocked
	initialize_user allows for rate limit bypass
	Admin is not able to grant PAUSER_ROLE_GMTOKEN and UNPAUSER_ROLE_GMTOKEN role
	Value of action will be rounded down leading to bypass of limit
	Attestations can't be closed in edge case
	GM token pauser can also pause USDon due to shared mint authority and Pausable extension
	USDon UI multiplier can be modified by GM token UPDATE_MULTIPLIER_ROLE
	set_ondo_user_rate_limit uses wrong default window

	Low Risk
	Creation of attestation PDA will not account for lamport balance
	Attestation can be closed 30 seconds past creation
	Attestations can be reused by closing and recreating attestation PDAs before expiration
	Admin can't overwrite non-zero limit_window
	Restriction on multisig usage as the upgrade authority
	GM token minter bypasses token-level mint limits
	USDon token minter/burner bypasses token-level mint limits
	Non ATA usdc_vault / usdon_vault will lead to all swaps reverting
	swap_usdon_to_usdc() allows for 0 value swap
	Missing oracle-based swap pricing logic, swaps are always 1:1 despite oracle_price_enabled
	Pyth oracle sanity check ignores price exponent
	Attestation signer address is not validated
	Minting/Redeeming can not be used with non-ATA token accounts
	USDC accounts don't verify correct token program
	oracle_price_max_age not checked against MAX_AGE_UPPER_BOUND on initialization
	usdc_price_update could be zero
	Zero usdon_mint can be intialized
	USDC mint constraint is commented out in UsdcSwapContext
	GM token admin mint cannot target PDA recipients
	Incorrect mint used in swap_usdc_to_usdon
	Missing mint capabilities for AdminMintRoleGmtokenManager
	USDon guardian cannot remove roles after giving them
	Several defined roles are unused in the Solana program
	Defined but unused error codes indicate missing or incomplete validations
	init_usdon_roles misses RoleGranted event
	Sanity checker can be initialized with zero last_price
	mint is missing token program check
	Users will loose up to 999 lamports of USDon on each USDC redemption
	Type conversion can lead to unexpected behavior
	Signature verification has more restrictions than intended

	Informational
	Role initializing/closing is dependent on mutability of program
	Tokens with transfer-allowed == false can still be transferred
	Misleading is_paused parameter name for enable_oracle_price
	Incorrect documentation of PauseGmToken
	Incorrect documentation of MAX_SECONDS_EXPIRATION
	Incorrect documentation of GmTokenManagerAdminGlobalPauser
	trading_hours_offset missing in initialize_gmtoken_manager comment
	Metadata update authority set to program PDA but no update path implemented
	Unnecessary role checks for AdminRoleGmtokenManager
	Incorrect comment in sanity checker
	Incorrect event emission in set_token_limit
	Incorrect documentation of mint_usdon and burn_usdon
	Missing access control documentation on initialize_usdon_manager function
	Incorrect role comments for sanity checker in lib.rs
	rate_limit_check should use PRICE_SCALING_FACTOR
	closer unnecessarily mutable in CloseAttestationAccount

